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    Chapter 3 Polymer Physics
    Polymer Gels and Elastomers

An ideal rubber responds to stress through changes in the entropy of the chains making up the
network.  The ideal rubber displays a Hookean spring constant, 3kT/Nb2 (pp. 46).

The elastic free energy, A, of a chain, under the assumption of a Gaussian coil distribution and
affine deformation of crosslink sites yields,

A = nckT(Eαβ)
2/2 + A0(V,T)

where nc is the number of chains in the rubber, Eαβ is the deformation gradient tensor (modulus
tensor), and A0 is the free energy in the unstretched state.  This equation for the free energy allows
the calculation of the mechanical response of an ideal rubber.

For example, the shear modulus, G, is given by,

G = vckT

where vc is the number density of crosslinked chains.

Under uniaxial extension the stress, s, is given by,

σ = vc kT (λ2 - 1/λ)

under the assumption of incompressibility.  λ is the strain.

The ideal rubber model of Kuhn lacks a description of finite extension and non-affine behavior of
crosslink sites.

    Stress        Optical        Law:

When we consider dynamic behavior, optical birefringence will be used as a basis for a number of
phenomena.  Some of these phenomena are based in the stress optical law for networks and for
this reason Doi introduces the stress optical law in chapter 3.

The index of refraction of a material is a measure of the bending of light as it passes through a
sample.  If polarized light is used the index can vary with direction of polarization depending on
the degree of orientation of the sample.  An oriented sample will have a stretching direction, SD,
and a normal direction, ND.  The birefringence, ∆n, is defined as,

∆n = nSD - nND

Birefringence can occur as a direct, linear result of orientation leading to a linear stress optical rule,

∆n = Copt (σzz - σxx)

where Copt is the stress-optical coefficient.  Birefringence in polymers is a measure of the
conformational distribution of chains since it is based on the birefringence of the chain's
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substructural components.  The development of a molecular scale basis for birefringence in
polymers is based on the Rouse model for a chain, that is, a polymer chain can be viewed as a
sequence of identical elastic springs (composed of a number of Gaussian segments giving rise to
an elastic constant, bRouse,

bRouse = 3kT/aRouse
2

where aRouse is the end-to-end distance of a Gaussian Rouse segment.  The tensile stress, σzz, is
given by,

σzz = bRouseΣ{zizi}/V = bRouse cspr<zi
2>

where cspr is the number density of Rouse springs and <zi
2> is the average mean-square extensions

in the z-direction.  Similarly,

σzz - σxx  = bRouse cspr {<zi
2> − <xi

2>)

The total extension of the chain, ri, is related to the x and z extensions by the direction cosines,

zi = ri cosθ i
z

xi = ri cosθ i
x

so,

σzz - σxx  = bRouse cspr {<cos2θ i
z> − <cos2θ i

x>)< ri
2>

The sum of all direction cosine squares equals 1,

<cos2θ i
x> + <cos2θ i

y> + <cos2θ i
z> = 1

and,
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<cos2θ i
y> = <cos2θ i

x>

so,

<cos2θ i
x> = 1/2 {1 - <cos2θ i

z>}

and

σzz - σxx  = bRouse cspr < ri
2> {3<cos2θ i

z> - 1}/2

The expression to the right of < ri
2> is called the orientational order parameter for the Rouse

segments, Sspr
or.

σzz - σxx  = cspr 3kT < ri
2> Sspr

or/aRouse
2

The Rouse element, or a spring element, has internal optical birefringence which is related to the
birefringence of a chains base unit, a statistical segment or mer unit.  The birefringence of a
perfectly oriented, Sor = 1, bulk sample is related to the asymmetry in polarizability of molecular
units, ∆β, through the Lorentz-Lorenz equation,

∆n =
n 2 + 2

n 

1

6ε0

cm∆β

cm is the density of molecular units, ε0 is the dielectric constant for vacuum and n bar is the mean

index of refraction.  The anisotropy of the polarizability per Rouse spring, ∆βspr, is related to the

anisotropy of the polarizability of a chain unit, ∆β, by the function,

∆βspr = nm∆β <Φ(f)>

where f is the tensile force on the spring and Φ(f) is a function which is even, i.e. +f and -f have

the same resulting value and as f->0, Φ(f)->0; as f->∞, Φ(f)->1.  The simplest form is,

Φ(f) = Φ2f
2

where Φ2 is a constant.  The stress-optical ratio, Copt  = ∆n/ σzz - σxx , is given by,
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Copt =
n 2 + 2

n 

1

6ε0

nm∆βaR
2

3kT

f 2

ri
2

Φ2

also,

f = 3kT ri/aR
2

and,

aR
2 = nm a0

2

so,

Copt =
n 2 + 2

n 

1

2ε0

kT∆β
a0

2
Φ2

predicting a constant stress-optical coefficient on a molecular basis for a rubber or a polymer melt
which can be described using the Rouse chain model, i.e. an entangled melt.  The stress-optical
coefficient depends on the size of a monomer, a0, the optical anisotropy per monomer, ∆β, and the

coefficient Φ2 which is related to the orientation of chain elements within a Rouse element (the
elastic restoring forces).

Figure 3.4 pp. 55 demonstrates that the stress optical law, that is the ratio of optical birefringence
and stress remains constant even under nonlinear deformation, holds not only for rubbers, but also
for polymer solutions and melts.  The lines reflect the optical birefringence divided by the stress-
optical coefficient and the points the stress as measured in polystyrene solutions.  Both the shear
stress and the normal stresses are represented very will by this model.  This indicates that the
basis of stress in an elastomer and in polymer melts and solutions is segmental
orientation.

   Interaction        Between        Chain        Elements       in       a        Gel:

The Rouse model does not consider chain interactions such as those considered in the excluded
volume interaction or entanglement effects.  Additionally, Doi discusses "nematic" ordering issues
which are certainly not considered in Kuhn networks using a Rouse model.  Nematic interactions
on the stress optical coefficient are a fairly unusual treatment and are of no real importance.

Excluded Volume:

We have already stated that a polymer in a single component melt is in a Gaussian state due to
screening of interactions.  This would appear to be completely applicable to a rubber which is
essentially a single phase melt if the crosslink sites are small.  The Rouse /Kuhn model would
appear to have some problems for good-solvent gels in terms of excluded volume, i.e. the entire
theory is based on Gaussian scaling starting with the calculation of the free energy for a network
and all the way through the use of the Rouse spring constant.  There is no formal resolution of this
problem, however, the data in figure 3.4, pp. 55, appears to be in good solvent conditions so it
would appear that at least the gross behavior of the stress optical coefficient is met for excluded
volume coils.  Doi makes the argument that the Stress optical law holds for all systems where the
volume fraction is constant since the excluded volume term in the Flory-Huggins approach appears
with a volume fraction prefactor.  This doesn't seem to resolve the issue of Gaussian statistics
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which are assumed throughout the derivation of the stress optical law.  A scaling approach to the
stress-optical law would appear to be possible and has probably been pursued

Entanglement Interactions (Deviation from Phantom Chains):

The Kuhn/Rouse model assumes that chain response is not effected by entanglements.  For
instance the Rouse model predicts a zero shear viscosity which follows a linear power of molecular
weight.  This is only observed below the entanglement molecular weight.  Where entanglements
are important the zero shear viscosity follows a 3.4 power of molecular weight, so the effect of
entanglements are dramatic, especially on kinetic features.  In a gel or elastomer undergoing
deformation entanglements are expected to contribute to the modulus and are expected to modify
the segmental orientation function.

Figure 3.6 of Doi shows the tube-model for an entangled rubber.  The presence of other chains
serves to form an oddly shaped "tube" in which the polymer chain is confined, especially at a
single snapshot of time.  The tube diameter, a, is related to the inverse of the linear density of
chains in the system.

If a polymer is assumed to be trapped in a tube of diameter "a", the entropy of the chain will be
significantly reduced since the number of possible configurations will be limited by the tube.  The
total number of configurations, W, for the chain can be broken into two terms which describe a
random configuration along the path of the tube, W1(L,N), and a confined configurations normal
to the path of the tube, W2(a,N),

W = W1(L,N) W2(a,N)

W1(L,N) corresponds to a 1-dimensional random walk,

W1(L, N) = z1
N 3

2πNb2

 
 

 
 

3 / 2

exp
−3L2

2Nb2

 
 
  

 

and W2(a,N) reflects the number of random walks in a tube of diameter a,

W2(a,N) = z2(a)N

W2(a,N) is a function of the tube diameter alone for a fixed molecular weight.  If a fixed tube
diameter is assumed then W2(a,N) is a constant.

If affine deformation is assumed then the tube length changes in proportion to the bulk strain.  The
change in free energy on deformation from a length L to a length L' is given by,

A' chain −Achain = kT(ln W' − ln W) =
3kT

2Nb2
(L'2 −L2 )

The undeformed chain can be described as a series of subunits of length "a", the tube diameter"
which are randomly arranged in space.  The unit vector, ui, describes the direction of each segment
of length "a".  When a strain tensor, E, is applied to the sample the direction of element "i"
becomes E dot ui.  The length of element "i" becomes a |E dot ui|.  The deformed length, L', is the
sum of these deformed segments,

L' = a E • ui
i =1

Z

∑ = Za E• ui 0



6

where Z is the number of segments of length "a" in the undeformed state.  Then,

A' chain −Achain[ ]Tube _ Model
= nc

3kT

2Nb2
Z2a2( E • ui

0

2
− 1)

In the absence of entanglements, Kuhn Theory, this result is,

A' chain −Achain[ ]Kuhn _ Model
= nc

3kT

2
( E • ui

0

2
− 1)

where nc is the number of crosslinked chains.  The entangled chain under the tube model shows an
enhanced change in free energy on strain, and a corresponding enhanced modulus, by the factor
Z2a2/Nb2.  This has been experimentally verified.

    Equilibrium        Gel        Swelling:

Consider a rubber which is placed in and excess of what would be a good solvent for the base
polymer, polydimethylsiloxane (PDMS) in benzene at room temperature for instance.  The
elasticity of the network opposes dissolution of the network while specific (local) enthalpic
interactions and the increase in entropy drive swelling of the elastomer.  A thermodynamic balance
is reached between elasticity and decrease in free energy for mixing which leads to a fixed,
equilibrium amount of swelling which depends on the system and temperature.  The degree of
equilibrium swelling is a measure of the interaction parameter, χ, and the molecular weight
between crosslinks, Mc.  By summing the elastic and mixing free energies and setting the
derivative with respect to composition to zero, the following equation can be obtained,

φ + ln(1 −φ) + χφ 2 +
ρVc

Mc

φc

1
3 = 0

Doi equation 3.74 pp. 63.  The logarithm term can be expanded as ln(1-φ) = -[φ + φ2/2 + φ3/3 +

φ4/4 + ...].  Retaining only second order terms (for φ less than 1) this yields,

(χ - 1/2) φ2 + ρVc φ
1/3/Mc = 0

or

φ = (ρVc /{(1/2 - χ) Mc})3/5

Problems with this Equilibrium Swelling Model:

Although the equilibrium swelling law given above, has been widely used and verified
experimentally we should consider certain problems in the derivation in the context of coil scaling
behavior which was discussed in chapter's 1 and 2.  

First, the swelling law is based on Gaussian statistics which are not correct if the volume fraction
of a good solvent exceeds about 1%.  This is certainly the case for a swollen elastomer in a good
solvent where the solvent volume fraction might be about 50%.  
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Secondly, we have seen previously that coil expansion in a good solvent usually involves
transitions in scaling, i.e. blobs.  That is, one might expect good solvent scaling at small sizes of
observation to occur first as the solvent enters the rubber followed by expansion of good solvent
blobs which is counteracted by mechanical elasticity operating at the size scale of the chain between
crosslinks.  Observation of coil scaling in swollen elastomers is a fairly trivial task using SANS
and deuterated solvents.  These results contradict the simple view used to describe equilibrium
swelling.  A major unanswered question is how do these structural observations correlate with
bulk observations of equilibrium swelling which seem to follow the equation given above.


