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    Chapter 1 Polymer Physics
    The Isolated Polymer Chain

    Random Walk model:   

Brownian motion of a particle occurs in a close to random manner.  If the path of a particle in a
random (Brownian) walk is traced in time it will most likely cross itself several times (Left below
in 2-d).  If the walk does not penetrate itself a different type of path is formed, the self-avoiding
walk (Right below in 2-d).  

A random walk can be constructed more easily on a lattice where the number of choices in direction
for each step are limited, and the step length is fixed, b (Left below).  A lattice can also be used for
a self-avoiding walk (Right).

A well know result of Brownian motion for a random walk is that the "average" distance
traveled is proportional to the square root of the time allowed for the particle to travel in 3-d space.
<R> = k t1/2.  This is a direct result of the distance traveled following a random distribution, i.e.
for a random walk the choice of direction is completely random at each step.  For a random
distribution under the condition of a large (infinite) number of steps, and finite probability for each
of the choices for direction the probability that the walk length (end to end distance) is x in units
of b is given by the Gaussian distribution function (a special case of the Binomial Distribution),
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Usually the probability of a walk of length between R and R + dR is needed for calculations and
this is obtained by multiplication of the 1-d function by dR,
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The 3-d Gaussian can be obtained by multiplying three probability functions similar to that above
for each of the Cartesian coordinates on a 3-d lattice, and using n/3 steps for each direction.  Also,
a factor of 4πR2 dR is needed to consider a differential spherical surface
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The Gaussian distribution describes a completely random choice of direction for each step of a
walk.  For such a condition the sum of all steps (taken as vectors on the lattice) is zero (eqn. 1.1 in
Doi).  This means that the average value of R (sum of step vectors divided by number of steps) is
0, <R> = 0.  This is called the first moment of the distribution and is calculated from,

R = RPG R,n( )dR = 0
0

∞

∫

It is desirable to obtain a description of the average length of a random walk.  This can be obtained
using the second moment of the distribution, the mean square, <R2>, whose value is not zero.  

R2 = R2PG R,n( )dR = nb2

0

∞

∫

This indicates that the average size of a random walk is proportional to the square-root of the
number of steps (in parallel to the square root of time for a constant speed of motion).

    Dimensional        Considerations   

An expression for the "average" length of a rod yields <R> = kn, and the average diameter of a
sphere or cube, <R> = kn1/3.  For a disk the average size is given by <R> = kn1/2.  A general
expression for any object in terms of a "scaling-law" is <R> = αn1/df, where α is called the
lacunarity and df is the mass-fractal dimension of the object.  A rod is 1 dimensional and df = 1, a
disk is 2 dimensional and df = 2 and a cube is 3 dimensional and df = 3.  A linear polymer coil also
follows a dimensional scaling law with df = 2 for a 2-d object.  

Obviously polymers and plates are distinguishable structures despite the fact that both display 2-
dimensional scaling.  Other scaling dimensions are useful to distinguish between plates and
Gaussian polymers for instance.  One of these, the connectivity dimension is of particular use and
reflects the relationship between a primitive path of minimum distance, Rmin, and the number of
total units in an object, n, Lmin = kn1/C, where C is the connectivity dimension.  For a linear-
polymer the path of minimum end to end distance is the chain's primitive path which is of length
nb so, Lmin = kn1 and C = 1.  For a plate, the path is the diameter and Lmin = kn12 , so C = 2.  For all
regular objects (plate, rod, sphere) df = C.  Thus, a Gaussian polymer coil and a plate have the
same mass-fractal dimension but different connectivity dimensions.  C ranges from 1 to 3 and is
independent of df.

    Random         Walks       as        Models       for        Polymer        Coils.   
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It can next be considered that the lattice model is adaptable to describing a polymer coil.  For a
Gaussian coil the average end to end distance is given by n1/2b as for the random walk.  In polymer
physics two common modifications to the Random Walk approach are usually considered and
these are called Short Range and Long Range Interactions.  Short-range interactions
involve chain units close to each other in terms of the path of the random walk.  Long-
range interactions involve interactions which are "spatially" close but which involve chain units
separated by long distances along the chain path.  Both short- and long-range interactions
involve chain units which are spatially close to each other as shown below (short range LEFT,
long range RIGHT).

Short Range Interactions:

Rotational-Isomeric-States and other chain stiffness/helicity issues and the fact that a real chain can
never "fold back on to itself" fall under the category of "short-range" interactions.  As might be
expected such issues can be dealt with in terms of modification of the value of "b" to account for
chain-stiffness (b would increase from a bond distance or mer-unit size for instance).  This type of
modification can be described in terms of an average length of persistence or a Persistence Length
and has been describe by Flory in terms of the Characteristic ratio for real chains.  

Doi demonstrates that short-range interactions do not modify the basic physics of a random walk in
section 1.12 on pp. 4, for the condition that a chain is free to rotate to any site except the
preceding step.  The main point is that this type of exclusion on a short range (in terms of the
path) does not need to be considered in calculations of the scaling behavior of random walks, i.e.
the mass-fractal dimension of the chain (see above).

Doi (pp. 4) considers a polymer chain as composed of a series of bond vectors, ri.  In this
terminology the mean value for a vector r i+1 for a Gaussian chain is 0 since,

ri+ 1 = bi
i =1

i = z

∑

where z is the coordination number for the lattice and the average <bi+1> includes all directions.
On a lattice with z possible directions for the bond vector ri+1, introduction of a short range
interaction which forbids a chain from doubling back on itself leads to (z-1) choices rather than z
choices given that the previous bond vector ri is fixed in position.  This means that the average
value of ri+1 is not 0 but favors a direction away from the previous bond, ri.  

Since the average <ri+1>SRI for the short range interaction case includes all directions of <ri+1>Gaussian
for the Gaussian case except ri,

<ri+1>Gaussian = 0 = (z - 1) <ri+1>SRI - ri (Doi 1.10)

and

<ri+1>SRI = ri/(z-1)
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For the Gaussian chain the mean square end to end distance is given by,

R2 = ri •rj
j =1

n

∑
i = 1

n

∑

which for i not equal to j is <ri><rj> = 0 since there is not correlation in directions, and for i = j is
<ri

2> = nb2.  For the SRI chain there is some correlation when i is not equal to j for instance when
j = i + 1, <ri><rj> = b2/(z-1) as shown above.  For j = i + 2, <ri><rj> = b2/(z-1)2, as shown by
Doi on pp. 5.  In general,

ri • rj =
b2

z − 1( ) n −m

and

R2 = ri •rj ≅
j = 1

n

∑
i =1

n

∑ b2

z −1( ) k = nb2 z

z − 2
= nbeff

2

k =−∞

∞

∑
i = 1

n

∑

The second to the last equality is the result of the Sum of Geometric Progression Rule,
lim n->∞ of a + ar + ar2 +... = a/(1-r)
substituting x=1/(z-1) results in 2/(1-x) - 1 = 2(z-1)/(z-2) - 1 = z/(z-2)

The Gaussian chain model accounts for short-range interactions if the parameter b is allowed to
have a modified definition.

Since short-range interactions involve the details of the lattice model and since these have no
effect on the scaling-behavior of the chain or any of the physical understanding of the Gaussian
chain, it should be easy to see that the Gaussian chain model is not tied to the lattice framework in
any way.  In fact, the original presentation above arrived at a Gaussian chain model by direct
comparison with Brownian motion which does not depend on a lattice model.  

The Bead and Spring Model for a chain is an alternative derivation which does not rely on a
lattice.  The Bead and Spring Model is useful for estimation of kinetic features of ideal coils such
as the viscosity of Gaussian polymer chains.  In this context it is referred to as the Rouse Model
or the Rouse-Bueche-Zimm model.  The Bead and Spring Model considers a chain composed of
balls connected by Hookean springs.  The length of the spring/bonds is allowed to elastically
deform following a Gaussian distribution.  

The Bead and Spring Model will be dealt with in detail in Chapter 4.

    Spatial        Distribution       of        Chain        Segments.

The end to end distance is a useful parameter for describing an ideal chain for calculation of the
radius of gyration and hydrodynamic radius of chains.  The Radius of Gyration, Rg, is
measured in static light, x-ray and neutron scattering experiments while the hydrodynamic radius,
RH, is measured in quasi-elastic light scattering and rheology experiments.  It is also important to
know a statistical description of the spatial distribution of chain segments within a polymer coil
since in addition to Rg, a statistical spatial distribution is measured in scattering experiments
especially in neutron scattering experiments.  
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Consider a chain of length N whose average end to end distance is N1/2 b, where b is the effective
step length for the chain which has no long-range interactions.  For the n'th chain step, gn(r) is the
average density of segments at a radial position r from step n.  Rn is here the position vector for the
segments of the chain.  It is important to keep clear that rn is a radial position relative to segment
"n" while Rn is the segmental position relative to a coordinate system based at the first segment
where n = 1.  n can have values from 1 to N.  Then,

gn rn( ) = δ r − Rm − Rn( )( )
m =1

N

∑

where the del operator has a value of 1 when the position vector difference (R's) is equal to r.
gn(r) will have values between 0 for r's larger than the chain to 1 for r = 0.  

Since gn(r) only considers a single segment, "n", it must be averaged over all segments in order to
obtain a statistical description of the spatial distribution of chain segments for the entire coil.  This
averaging results in the pair correlation function, g(r) for the coil,

g(r) =
1

N
gn r( ) =

1

N
δ r − Rm − Rn( )( )

m =1

N

∑
n =1

N

∑
n=1

N

∑

The pair correlation function, g(r), is directly related to the intensity scattered by light,
neutrons or x-rays from a polymer coil.  The scattered intensity is measured as a function of
scattering angle, θ, and is usually plotted against the reduced parameter, q = |q| = 4π/λ sin(θ/2),
which is called the scattering vector.  "q" is the inverse space vector and is related to the Bragg
spacing, d, by d = 2π/q.  

Scattered Intensity = K g(q) where K is a constant for a given system which includes the contrast
and instrumental parameters.  g(q) is the Fourier Transform of g(r),

g(q) = drg(r)exp iq• r( )∫ =
1

N
exp iq • Rm − Rn( )[ ]

m=1

N

∑
n =1

N

∑

For a Gaussian polymer coil the solution to this double summation is the Debye Equation for
Polymer Coils which was first solved in 1946 by P. Debye.

g(q)Gaussian =
2

Q2
Q − 1+ exp −Q( )[ ]

where Q = q2Nb2/6 = q2Rg
2

The Debye function for polymer coils describes a decay of scattered intensity following a power-
law of -2 at high-q and a constant value for intensity at low-q (below Rg).

    Radius       of        Gyration       for       an       Ideal        Chain.

The exponential term in the summation for g(q) given above can be expanded using e-x = 1 - x/1! +
x2/2! - x3/3! + ... xn/n! + ...  For x less than 1, i.e. at low-q, this can be truncated to the first three
terms so the argument of the double summation becomes [1 - iq<(Rn - Rm)> <cos α> - (1/2) q2

<(Rn - Rm)2> <cos2 α> + ...] where α is the angle between q and (Rn - Rm).  Since cosine is an
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even function the term <cos α> = 0.  Also, from math handbooks <cos2 α> = 1/3.  The argument
of the double summation then becomes, [1 - (1/6) q2 <(Rn - Rm)2>].  By performing the
summation on the two terms independently, the summation for g(q) can be written,

g(q) =
1

N
N2 −

1

6
q2 Rn − Rm( )2

m =1

N

∑
n =1

N

∑ 
  

 
  

The center of mass of the coil is given by,

RG =
1

N
Rn

n =1

N

∑ .

Using this center of mass, a radial term can be defined which describes a distance from RG where
all of the mass could be located and the particle would have the same inertia.  This distance is the
radius of gyration, Rg.  Rg is defined by,

Rg
2 =

1

N
Rn − RG( )2

n = 1

N

∑

If the definition of RG is substituted in the above expression,

Rg
2 =

1

N
Rn −

1

N
Rm

m =1

N

∑ 
 
  

 

2

n = 1

N

∑ =
1

N

1

2N
Rn − Rm( )2

m =1

N

∑
n= 1

N

∑ =
1

2N2
Rn − Rm( )2

m =1

N

∑
n =1

N

∑

The last expression can be substituted in to the expression for g(q) above to yield,

g(q) = N 1 −
q2Rg

2

3
+ ...

 

 
  

 
 ≅ g(0)e

−
q 2 Rg

2

3

The first two terms of the e-x expansion above are 1 - x, so the expression in the brackets can be
approximated by the latter term above which is known as Guinier's Law.  Guinier's Law is a
general expression for any object and describes an exponential decay in intensity with angle for
angles where qRg<<1.

The double summation for Rg can be rewritten as follows,

Rn − Rm( )2

m =1

N

∑
n =1

N

∑ = n − m b2

m = 1

N

∑
n=1

N

∑ = 2 (n − m)b2 = 2b2 Z + 2 Z −1( ) + 3 Z − 2( )... Z −1( )2 + Z[ ]
m =1

N

∑
n =m

N

∑

where Z = N - 1.  The last double summation can be justified by constructing an NxN matrix of m
vs n with values of |n - m|.  Such a matrix is symmetric about m = n (this is where the 2 prefactor
comes from).  The double summation at the end can be rewritten,

Z + 1− p( )p = Z +1( ) p
p =1

Z

∑
p =1

Z

∑ − p2

p =1

Z

∑ =
Z Z +1( ) Z + 2( )

6
≅

N3

6

The latter steps involve the summation of power rule from math handbooks,
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up

u =1

n

∑ =
n p+1

p +1
+

np

2
+

pnp −1

12
for p<3  (other terms needed for higher p's)

Using this result in the calculation for Rg gives,

Rg
2 =

Nb2

6
=

RRMSeted
2

6

Rg is 1/√6 of the RMS end-to-end distance.  

There are several advantages to using Rg rather than the end-to-end distance.  For branched, ring or
star chains the end-to-end distance has no meaning while the radius of gyration retains its meaning.
Also, Rg is a natural measure for scattering experiments.  Effects of polydispersity can be
incorporated in the definition of Rg.  Rg can be defined for any object, for example Rg for a sphere
is √(3/5) of the sphere radius.  Similar simple definitions are available for rods and ellipsoids.

    Extensions       of       the        Debye        Equation       for       an       Ideal        Polymer        Coil.

The Debye equation for polymer coils was given above,

g(q)Gaussian =
2N

Q2
Q − 1 + exp −Q( )[ ]

where Q = (qRg)
2.  At low-q this function extrapolates to N (expansion of exp(-x) for small x is    

1 - x + x2/2).  At high-q the Debye function extrapolates to 2N/(qRg)
2 (at high-q, exp(-Q) goes to 0

and Q >>1).  This high-q limit is a -2 slope power-law for intensity in q, so a log I vs log q plot
will be a line with slope -2.  In general, weak slopes in log-log plots of this type reflect the
negative of the mass-fractal dimension of the object.  The cutoff between this power-law behavior
and the constant intensity behavior at low-q is governed by Rg.

Doi mentions an empirical function which approximates the Debye function, the so called Ornstein-
Zernike scattering equation,

g q( ) =
N

1 +
q2Rg

2

2

As originally described the Ornstein-Zernike function used a term eta2 for Rg
2/2.  There is really no

advantage to the use of the Ornstein-Zernike function and it can lead to errors in fit values.  It is
popularly used by theoreticians but rarely used by experimentalists.

    Non-Ideal        Chains       (Long-Range       Interactions).   

Long range interactions can be described in terms of the volume excluded for a given chain
segment by a chain segment a long primitive path distance away.  In the sense of a Brownian,
random walk this type interaction is commonly known as the Self-Avoiding Walk.  

The self-avoiding walk model is the normal description of a dilute polymer coil in
solution.
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That is, the ideal or Gaussian chain is, for polymers in solution, an extremely special condition
which only exists at the critical point.  Normal coils in solution are expanded in a self-avoiding
walk.

Because of this the self-avoiding walk has special importance.  However, it is also more
complicated than a simple Gaussian description.  The expanded coil is larger than the Gaussian coil
since excluded volume is a type of self-repulsion for the coil.

In order to obtain a scaling law which describes the excluded volume coil, a perturbation on the
ideal coil is considered.  That is, the distribution function, W0(R)dR which describes the number
of chains of length N which will have an end-to-end distance between R and dR must be modified
by a probability, p(R) that these chains are self-avoiding, that is that they do not cross.  Since
W0(R) involves an exponential term (Gaussian term) it is desirable also to obtain p(R) in an
exponential form.  Once the probability function is obtained the derivative with respect to R of
W(R) is taken to obtain the distance of maximum probability.  Presumably this distance is
proportional to N1/2b for the ideal chain and it is desired to find such a scaling law for the excluded
volume chain.

W0(R) is the Gaussian probability P(R,N)4πR2dR times the total number of chain conformations
possible for chains of N steps, ZN,

W0 R( )dR = Z N 4πR2 2π
3

Nb2 
 

 
 

−3 / 2

exp −
3

2

R

b N

 
 

 
 

2 

  
 

  dR

of this number the fraction which follow self-avoidance is p(R) = (1 - VC/R3)N(N-1)/2 where VC is the
volume of one segment of the chain so (1- VC/R3) is the probability of the chain avoiding one
segment, and this is raised to the total number of possible combinations of two segment pairs,
N(N-1)/2!.  This function for p(R) can be expressed as an exponential,

p(R) = exp
1

2
N N −1( )ln 1−

VC

R3

 
 

 
 

 
  

 
  = exp −

N2VC

2R3

 
 
  

 

where the second equality uses the fact that for small x, ln(1-x) = -x, and that for large N,
(N-1)=>N.  W(R)dR for the excluded volume chain can be estimated by W0(R)p(R)dR and since
both are expressed as exponentials the powers sum leading to,

W(R)dR = W0(R)p(R)dR = kR2 exp −
3R2

2Nb2
−

N2VC

2R3

 
 
  

 

The derivative of W0(R) will equal 0 at R*
0 = (2Nb2/3)1/2.  This is proportional to N1/2b as

expected.  Setting the derivative of W(R) to 0 yields,

−
3R*2

2Nb2
+

3N2VC

4R*3
+1 = 0

Rearranging and substituting R*
0 yields,

R*

R0
*

 
 
  

 
 

5

−
R*

R0
*

 
 
  

 
 

3

=
9 6

16

VC

b3
N
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For large N the R ratio is large and the cubic term can be ignored with respect to the 5'th power
term.  This yields,

R* ≅ R0
* N

1
2VC

b3

 

 
 

 

 
 

1
5

= kN
3

5

This critical result was first noted by Flory and Krigbaum and its development is termed Flory-
Krigbaum theory.

    Solvation        Effects:

Long-range interactions are potentially of variable degree.  That is a polystyrene chain will dissolve
in toluene or THF but it is expected that toluene, being a better solvent, will have a different
solvation behavior than THF, i.e. the chain conformation in the two solvents might be expected to
be different.  Another way to look at this is that the excluded volume, discussed above, could be of
a hard or soft core type, that is, rather than complete exclusion at a specified distance, there might
be a potential gradient which describes the long-range excluded volume.  The result of some simple
calculations can show an extremely surprising result.  No matter how good a "good"-solvent is,
the chain scaling follows the law given above.  For dilute solutions of polymer chains
there are only three discrete states, Gaussian, Expanded, and Collapsed!!   This
result is by no means self-evident from a chemical perspective.

In order to show that the goodness of solvation for good solvents does not effect the chain scaling,
consider the interaction energies for solvent, s, and polymer, p, sites on a lattice; εpp , εps, εss, and

the number of contacts for a given conformation of a polymer chain; Νpp , Νps, Νss.  The overall
system energy is given by a sum of the components for a single chain system in a configuration
"i", Ei = -Νpp  εpp  - Νps εps - Νss εss.  The average energy for all configurations with end to end
distance "R" is E R( ) .  The probability of an excluded volume chain W(R), given above, needs to
be modified by a Boltzman distribution function which describes the thermal distribution based on
these interaction energies to give the probability of an excluded volume chain with specific
interaction energies, P(R),

P R( ) = kW R( )exp
−E (R)

kT

 

  
 

  

The details of E R( )  can be calculated.  First, an average change in energy per lattice site for

solvation of a given solvent/polymer system can be given by ∆ε = 1/2(εpp  + εss) - εps.  The volume

fraction of polymer cells is given by φ = NVc/R
3.  The average probability that a given lattice site

contains a polymer segment is φ.  The probability that a site neighboring a given site contains a

polymer segment is φ times the coordination number, z.  For PP interactions this probability must
be divided by 2 since this will involve two indistinguishable arrangements by exchanging the two
P sites.  The average number of PP sites is this probability times the number of segments, N,

N pp ≅
1

2
zNφ
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The average number of SP sites is (1-φ), the probability of a solvent in any site, times z, times the
number of P segments, N,

N ps ≅ zN 1− φ( )

The average number of SS sites is the number of SS sites in a system with no polymer, N0
ss,

minus the other two numbers for PP and SP given above.  The expression for E R( )  can be written

as terms linear in φ and those independent of φ,

E R( ) ≅ −N ppε pp − N ssεss − N psε ps = −
zNφ

2
ε pp + zNε ps − φzNεps + Nss

0ε ss −
zNφ
2

ε ss − zNε ss + zNφε ss

 
 

 
 

= −
zNφ

2
ε pp − 2εps + ε ss[ ] − zNεps + Nss

0ε ss − zNε ss[ ] = −
zN 2Vc

R3
∆ε +  Terms independent of R

This expression can be used in the first equation of this section to yield,

P(R) = CR2 exp
−3R2

2Nb2
−

N2Vc

2R3
+

zN2Vc∆ε
R3kT

+ Terms independent of R
 
 
  

 

Here the chi parameter, χ, can be defined as χ = z∆ε/kT, and substituted in the above expression,

P(R) = CR2 exp
−3R2

2Nb2
−

N2Vc 1− 2χ( )
2R3

 
 
  

 
 

which has the same functional form as the original "long-range" interaction expression with VC

being replaced by VC (1-2χ) = V, the excluded volume as a function of goodness of solvent!

R*

R0
*

 
 
  

 
 

5

−
R*

R0
*

 
 
  

 
 

3

=
9 6

16

V

b3
N =

9 6

16

Vc 1 − 2χ( )
b3

N = (alternatively)
9 6

16

Vc

beff
3

N

This means that the goodness of solvent can be isolated as having an effect on chain persistence
rather than on chain scaling, the 5/3 dimension of an expanded coil (the normal condition for a
solvated chain) is retained regardless of the goodness of solvent.  Solvation effects, goodness of
solvent, effect local chain rigidity or flexibility and not chain scaling!

    Changes       in        Solvent        Goodness        with        Temperature.

A polymer chain in a good solvent at some temperature T will have an excluded volume parameter,
V = Vc (1 - 2 z∆ε/(kT)), the second term in the brackets being smaller than 1 the coil will show
expanded scaling with a mass-fractal dimension of 5/3 and some effective persistence length, beff =
b/(1 - 2 z∆ε/(kT))1/2, which is larger than that for a Gaussian coil since 1/(1 - 2 z∆ε/(kT))1/2 is
larger than 1.  As the temperature is dropped within the good solvent regime the coil decreases in
size while retaining good solvent scaling, mass-fractal dimension of 5/3, through changes in the
local persistence.  This will be a continuous change until 2 z∆ε/(kT) approaches 1 with decreasing

temperature.  At a very narrow (and specialized) temperature 2 z∆ε/(kT) will be exactly equal to 1
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and the coil will not display excluded volume at all!  At this unique temperature the coil in dilute
solution will be Gaussian.  This temperature is called the theta temperature, θ, and has a unique

value for any polymer/solvent pair.  The θ-temperature is also sometimes called the Flory
Temperature.  

At the Flory-Temperature the mass-fractal dimension of the coil becomes uniquely 2 and the
parameter "b" can be uniquely observed.  If the polymer solution is cooled below the theta-
temperature the polymer coil collapses into a "globule" which is a highly compact state related to
precipitation from solution.  It is difficult to obtain sufficient thermal control to access Gaussian
scaling in solution (±0.1°C is needed).  Figure 1.6 on pp. 16 of Doi shows the coil-to-globule
transition for dilute solutions of polystyrene whose theta temperature is close to 34.6°C in
cyclohexane.  Notice the abrupt collapse of expanded coils and the tenuous position of the
Gaussian state close to the middle of this rapid collapse in temperature.

The Globule state is of little interest to polymer scientists.  It is of dominant importance to protein
physicists and other biophysicists since this is the use state for most biopolymers.  Because of the
latter the coil-to-globule transition has received extended treatment in the past 5 to 8 years by
polymer theorists.

    Blobs,        Renormalized        Groups       and        Chain        Scaling.

The modern treatment of polymer coils involves adaptation of a number of concepts which are
native to other areas of physics such as critical phenomena, liquid crystals and superconductors.
The parallels involve statistical summations of directional vectors in thermally equilibrated systems.

From the above discussion it should be clear that variation of the step size, b, is necessary to
describe chain structure.  For instance, a group of mer units can be considered as a sub-unit for a
chain.  Consider three cases below.  In the first the chemical unit, b, is considered as the basic unit
and the end-to-end distance is <R2>1/2 = n1/2 b.  In the second, the chain is composed of groups of
mers which are themselves Gaussian so that the rms end-to-end distance, L, for a group of k mers
is given by L = k1/2 b.  The chain's end-to-end distance is described by <R2>1/2 = (n/k)1/2 L.  In the
third case k is a larger number and the same equations apply.  

This technique of redefining the chain by considering groupings of subunits is a basic feature of a
technique termed renormalization of the chain.  The basic features of the chain are not changed
by renormalization.  Rg and <R2>1/2 for the coil are not changed by renormalization.  

As the concentration of a polymer solution is increased it is possible to obtain conditions where
there is a change in coil scaling with size of observation (size of the circles in the diagram above).
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If the circle size in the above diagram is set to the size scale of this transition, the subunit of the
chain is called a blob.  Through the use of renormalization and blobs much of the complicated
scaling features observed in high polymers can be simplified into universal laws.  This will be
discussed in detail in Chapter 2.

It should be noted that the original work on polymer coil conformation in the 1940's and 1950's
involved measurement of Rg and the end to end distance as a function of the molecular weight and
solvent conditions.  The familiar Mark-Houwink equation is typical of the characterization of
polymers prior to Mandelbrot's seminal work on fractal systems and dimensional analysis of
statistical systems.  The Mark-Houwink equation describes the intrinsic viscosity of a polymer
solution in terms of two parameters, K and a, where a is a scaling coefficient for molecular weight,

η[ ] = KMa

The intrinsic viscosity is proportional to the rms end-to-end distance for a coil, so the parameter "a"
should be proportional to 1/df where df is the mass-fractal dimension.  In polymer physics this
scaling relationship has been explicitly described for the rms end-to-end distance using the scaling
exponent ν,

R2
1
2 = nνb

ν is equal to 1/df in a more universal lexicon, although rarely used in polymer physics.


