Chapter 1 Polymer Physics
The Isolated Polymer Chain

Random Walk model:

Brownian motion of a particle occursin a close to random manner. If the path of aparticlein a
random (Brownian) walk istraced in timeit will most likely crossitself several times (L eft below
in 2-d). If the walk does not penetrate itself a different type of path is formed, the self-avoiding
walk (Right below in 2-d).

A random walk can be constructed more easily on a lattice where the number of choicesin direction
for each step are limited, and the step length isfixed, b (Left below). A lattice can also be used for
aself-avoiding walk (Right).

A well know result of Brownian motion for a random walk is that the "average" distance
traveledis ,oroportional to the square root of the time allowed for the particle to travel in 3-d space.
<R> =k t"2. Thisisadirect result of the distance traveled following a random distribution, i.e.
for arandom walk the choice of direction is completely random at each step. For a random
distribution under the condition of alarge (infinite) number of steps, and finite probability for each
of the choicesfor direction the probability that the walk length (end to end distance) is x in units
of bisgiven by the Gaussian distribution function (aspecia case of the Binomial Distribution),
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Usually the probability of awalk of length between R and R + dR is needed for calculations and
thisis obtained by multiplication of the 1-d function by dR,

1-d Gaussian Walk of "n" steps
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The 3-d Gaussian can be obtained by multiplying three probability functions similar to that above
for each of the Cartesian coordinates on a 3-d lattice, and using n/3 steps for each direction. Also,

afactor of 4pR? dR is needed to consider adifferential spherical surface

P.(Rn)drR
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The Gaussian distribution describes a completely random choice of direction for each step of a
walk. For such acondition the sum of al steps (taken as vectors on the lattice) is zero (egn. 1.1 in
Doi). Thismeansthat the average value of R (sum of step vectors divided by number of steps) is
0, <R>=0. Thisiscaledthe first moment of the distribution and is calculated from,
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It is desirable to obtain a description of the average length of arandom walk. This can be obtained
using the second moment of the distribution, the mean square, <R*>, whose value is not zero.
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This indicates that the average size of arandom walk is proportional to the square-root of the
number of steps (in parallel to the square root of time for a constant speed of motion).

Dimensional Considerations

An expression for the "average" length of arod yields <R> = kn, and the average diameter of a
sphere or cube, <R> = kn'?. For a disk the average size is given by <R> = kn"?. A general

expression for any object in terms of a"scaling-law" is<R>= an”, where a is cdled the
lacunarity and d, is the mass-fractal dimension of the object. A rodis1dimensional andd, =1, a
disk is 2 dimensional and d, = 2 and a cubeis 3 dimensiona and d, = 3. A linear polymer coil also
follows adimensional scaling law with d, = 2 for a 2-d object.

Obviously polymers and plates are distinguishable structures despite the fact that both display 2-
dimensiona scaling. Other scaling dimensions are useful to distinguish between plates and
Gaussian polymers for instance. One of these, the connectivity dimension is of particular use and
reflects the relationship between a primitive path of minimum distance, R, and the number of
total unitsin an object, n, L .. = kn"®, where C is the connectivity dimension. For alinear-
polymer the path of minimum end to end distance is the chain's primitive path which is of length
nbso, L . =kn'and C=1. For aplate, the pathisthediameter and L, =kn*, so C=2. For all
regular objects (plate, rod, sphere) d, = C. Thus, a Gaussian polymer coil and a plate have the
same mass-fractal dimension but different connectivity dimensions. C rangesfrom1to3andis
independent of d,.

Random Walks as Models for Polymer Coils.
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It can next be considered that the lattice model is adaptable to describing a polymer coil. For a
Gaussian coil the average end to end distance is given by n'/?b as for the random walk. In polymer
physics two common modifications to the Random Walk approach are usually considered and
these are cdled Short Range and Long Range Interactions. Short-range interactions
involve chain units close to each other in terms of the path of the random walk. Long-
range interactions involve interactions which are "spatially" close but which involve chain units
separated by long distances along the chain path. Both short- and long-range interactions
involve chain units which are spatially close to each other as shown below (short range LEFT,
long range RIGHT).

Short Range Interactions:

Rotational-I someric-States and other chain stiffness/helicity issues and the fact that areal chain can
never "fold back on to itself" fall under the category of "short-range" interactions. As might be
expected such issues can be dealt with in terms of modification of the value of "b" to account for
chain-stiffness (b would increase from a bond distance or mer-unit size for instance). Thistype of
modification can be described in terms of an average length of persistence or a Persistence Length
and has been describe by Flory in terms of the Characteristic ratio for rea chains.

Doi demonstrates that short-range interactions do not modify the basic physics of arandom walk in
section 1.12 on pp. 4, for the condition that achain is free to rotate to any Site except the
preceding step. Themain point isthat thistype of exclusion on ashort range (in terms of the
path) does not need to be considered in calculations of the scaling behavior of random walks, i.e.
the mass-fractal dimension of the chain (see above).

Doi (pp. 4) considers a polymer chain as composed of a series of bond vectors, r,. In this
terminology the mean value for avector r,, for a Gaussian chain is 0 since,

where z is the coordination number for the lattice and the average <b,,,> includes all directions.
On alattice with z possible directions for the bond vector r;,,, introduction of a short range
interaction which forbids a chain from doubling back on itself leads to (z-1) choices rather than z
choices given that the previous bond vector r; is fixed in position. This means that the average

valueof r,,, isnot O but favors adirection away from the previous bond, r..

Since the average <r,,, >, for the short range interaction case includes all directions of <r;,,>¢, «ia
for the Gaussian case except r;,

<r.> =0=(z-D)<r,>x -1

i+1” Gaussian i

(Doi 1.10)
and

<M >e = M(z-1)



For the Gaussian chain the mean sguare end to end distance is given by,
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which for i not equal to j is <r;><r,> = 0 since there is not correlation in directions, and for i = j is
<r?>=nb?. For the SRI chain there is some correlation when i is not equal to j for instance when
j =i+1, <r><r>=Db%(z-1) as shown above. Forj =i + 2, <r><r> = b’/(z-1), as shown by
Doi on pp. 5. In generdl,
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The second to the last equality isthe result of the Sum of Geometric Progression Rule,
limn->¥ of a+ar +a’ +... = al(1-r)
substituting x=1/(z-1) resultsin 2/(1-x) - 1 = 2(z-1)/(z-2) - 1 = z/(z-2)

The Gaussian chain model accounts for short-range interactions if the parameter b is allowed to
have amodified definition.

Since short-range interactionsinvolve the details of the lattice model and since these have no
effect on the scaling-behavior of the chain or any of the physical understanding of the Gaussian
chain, it should be easy to see that the Gaussian chain model is not tied to the lattice framework in
any way. In fact, the original presentation above arrived at a Gaussian chain model by direct
comparison with Brownian motion which does not depend on a lattice model.

TheBead and Spring Model for achainis an aternative derivation which does not rely on a
lattice. The Bead and Spring Model is useful for estimation of kinetic features of ideal coils such
asthe viscosity of Gaussian polymer chains. In this context it isreferred to asthe Rouse Model
or the Rouse-Bueche-Zimm model. The Bead and Spring Model considers a chain composed of
balls connected by Hookean springs. The length of the spring/bonds is allowed to dadticaly
deform following a Gaussian distribution.

The Bead and Spring Model will be dealt with in detail in Chapter 4.

Spatial Distribution of Chain Segments.

The end to end distance is a useful parameter for describing an ideal chain for calculation of the
radius of gyration and hydrodynamic radius of chains. The Radius of Gyration, R, is
measured in static light, x-ray and neutron scattering experiments while the hydrodynamic radius,
R,,, ismeasured in quasi-elastic light scattering and rheology experiments. It is also important to
know a statistical description of the spatial distribution of chain segments within a polymer coil
sincein addition to R, a statistical spatial distribution is measured in scattering experiments
especialy in neutron scattering experiments.



Consider achain of length N whose average end to end distance is NV b, where b is the effective
step length for the chain which has no long-range interactions. For the n'th chain step, g.(r) isthe
average density of segments at aradia position r from step n. R, is here the position vector for the
segments of the chain. It isimportant to keep clear that r, isaradial position relative to segment

n" while R, is the segmental position relative to a coordinate system based at the first segment
wheren = 1. ncan havevauesfrom 1toN. Then,

where the del operator has avalue of 1 when the position vector difference (R's) is equal to r.
g,(r) will have values between O for r's larger than the chain to 1 for r = 0.

Since g,(r) only considers asingle segment, "n", it must be averaged over all segmentsin order to

obtain a statistical description of the spatial distribution of chain segments for the entire coil. This
averaging resultsin the pair correlation function, g(r) for the cail,
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The pair correlation function, g(r), is directly related to the intensity scattered by light,
neutrons or x-rays from a polymer coil. The scattered intensity is measured as a function of

scattering angle, g, and is usually plotted against the reduced parameter, q = |q| = 4p/l sin(qg/2),
which is called the scattering vector. "q" isthe inverse space vector and is related to the Bragg

spacing, d, by d = 2p/q.

Scattered Intensity = K g(q) where K is a constant for a given system which includes the contrast
and instrumental parameters. g(q) isthe Fourier Transform of g(r),

9(0) = ¢rg(nexp(ia- 1) = < a a {exdfiq- (R, - R)])
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For a Gaussian polymer coil the solution to this double summation is the Debye Equation for
Polymer Coils which was first solved in 1946 by P. Debye.

9 Doassian = 5 [Q- 1+ exp(- Q)]

QZ [
where Q = ’Nb?/6 = o°R ?

The Debye function for polymer coils describes a decay of scattered intensity following a power-
law of -2 at high-q and a constant value for intensity at low-q (below R)).

Radius of Gyration for an Ideal Chain.

The exponentlal term in the summation for g(q) given above can be expanded using €™ = 1 - x/1! +
x?/2! -x3/3! + ... x"/n! + ... For x lessthan 1, i.e. at low-g, this can be truncated to the first three

terms so the argument of the double summation becomes[1 - ig<(R, - R,)> <cos a> - (1/2) g2
<(R, - R )*><cos’ a> + ...] where a isthe angle between q and (R, - R,). Since cosineisan
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even function theterm <cosa> = 0. Also, from math handbooks <cos* a> = 1/3. The argument
of the double summation then becomes, [1 - (1/6) g <(R, - R,)>>]. By performing the
summation on the two terms independently, the summation for g(g) can be written,
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The center of mass of the coil is given by,
198
R = N gqu :

Using this center of mass, aradial term can be defined which describes a distance from R where
all of the mass could be located and the particle would have the sameinertia. Thisdistanceisthe
radius of gyration, R,. R, isdefined by,

R =+a((R- R))

If the definition of R is substituted in the above expression,
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The last expression can be substituted in to the expression for g(q) above to yield,
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Thefirst two terms of the € expansion above are 1 - X, so the expression in the brackets can be
approximated by the latter term above which is known as Guinier's Law. Guinier'sLaw isa
general expression for any object and describes an exponential decay in intensity with angle for
angles where gR <<1.

The double summation for Rg can be rewritten as follows,

a é((Rn Rn)z) =8 aln-mMb*=23 & (n- mp*> =20°[2+2(Z- ) +3(Z- 2).(Z- )2+ 7]

n=1 1 n=mm=1

whereZ =N - 1. The last double summation can be justified by constructing an NxN matrix of m
vsnwith values of [n- m|. Such amatrix is symmetric about m = n (thisis where the 2 prefactor
comes from). The double summation at the end can be rewritten,
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The latter stepsinvolve the summation of power rule from math handbooks,
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for p<3 (other terms needed for higher p's)

Using thisresult in the caculation for R, gives,

R _ N Rous
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R, is 1/36 of the RM S end-to-end distance.

There are several advantagesto using R rather than the end-to-end distance. For branched, ring or
star chains the end-to-end distance has no meaning while the radius of gyration retains its meaning.

Also, R, is a naturd measure for scattering experiments. Effects of polydispersity can be
mcorporated inthe definition of R;. Rg can be defined for any object, for example Rg for asphere
is ((3/5) of the sphereradius. Si milar § mple definitions are available for rods and ellipsoids.

Extensions of the Debye Equation for an lIdeal Polymer Coil.

The Debye equation for polymer coils was given above,

g(q)Gaussian = % [Q' 1+exp(-Q)]

where Q = (qR, )2. At low-q this function extrapolatesto N (expansion of exp(-x) for small x is
1-x+x%/2). At high-q the Debye function extrapolates to 2N/(qR, )? (at high-q, exp(-Q) goesto O
and Q >>1). Thishigh-qlimitisa-2 slope power-law for |ntenS|ty ing, soalog ! vslog q plot
will be aline with slope -2. In general, weak slopes in log-log plots of this type reflect the
negative of the mass-fractal dimension of the object. The cutoff between this power-law behavior
and the constant intensity behavior at low-q is governed by R

Doi mentions an empirica function which approximates the Debye function, the so called Ornstein-
Zernike scattering equation,

g(a) = %Rgz

1+ 3R/
As originally described the Ornstein-Zernike function used aterm eta? for R, ?]2. Thereisrealy no
advantage to the use of the Ornstein-Zernike function and it can lead to efrorsin fit values. Itis

popularly used by theoreticians but rarely used by experimentalists.

Non-ldeal Chains (Long-Range Interactions).

Long range interactions can be described in terms of the volume excluded for a given chain
segment by a chain segment along primitive path distance away. In the sense of a Brownian,
random walk this type interaction is commonly known asthe Self-Avoiding Walk.

The self-avoiding walk model is the normal description of a dilute polymer coil in
solution.



That is, theideal or Gaussian chain is, for polymers in solution, an extremely special condition
which only exists at the critical point. Normal coilsin solution are expanded in a self-avoiding
walk.

Because of this the self-avoiding walk has specia importance. However, it is aso more
complicated than a simple Gaussian description. The expanded coil is larger than the Gaussian cail
since excluded volume is atype of self-repulsion for the coil.

In order to obtain a scaling law which describes the excluded volume coil, a perturbation on the
ideal coil isconsidered. That is, the distribution function, W,(R)dR which describes the number
of chains of length N which will have an end-to-end distance between R and dR must be modified
by a probability, p(R) that these chains are self-avoiding, that is that they do not cross. Since
W,(R) involves an exponential term (Gaussian term) it is desirable aso to obtain p(R) in an
exponential form. Once the probability function is obtained the derivative with respect to R of
W(R) is taken to obtain the distance of maximum probability. Presumably this distance is
proportional to N¥?b for the ideal chain and it is desired to find such a scaling law for the excluded
volume chain.

W, (R) isthe Gaussian probability P(R,N)4pR*dR times the total number of chain conformations
possible for chains of N steps, Z",
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of this number the fraction which follow self-avoidance isp(R) = (1 - V/R®)"N Y2 where V. isthe
volume of one segment of the chain so (1- V/R®) is the probability of the chain avoiding one
segment, and thisis raised to the total number of possible combinations of two segment pairs,
N(N-1)/2!. Thisfunction for p(R) can be expressed as an exponential,
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where the second equality uses the fact that for small x, In(1-x) = -x, and that for large N,
(N-1)=>N. W(R)dR for the excluded volume chain can be estimated by W,(R)p(R)dR and since
both are expressed as exponentials the powers sum leading to,

3R N*V.6
W(R)dR = W(R)p(R)dR= kR expg oNb? T 2R o

The derivative of W,(R) will equal 0 at R, = (2Nb?*/3)"2. This is proportiona to N*?b as
expected. Setting the derivative of W(R) to O yields,
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Rearranging and substituting R’ yields,
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For large N the R ratio islarge and the cubic term can be ignored with respect to the 5'th power
term. Thisyields,
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Thiscritical result wasfirst noted by Flory and Krigbaum and its development is termed Flory-
Krigbaum theory.

Solvation Effects:

Long-range interactions are potentialy of variable degree. That is apolystyrene chain will dissolve
in toluene or THF but it is expected that toluene, being a better solvent, will have a different
solvation behavior than THF, i.e. the chain conformation in the two solvents might be expected to
be different. Another way to look at thisisthat the excluded volume, discussed above, could be of
a hard or soft core type, that is, rather than complete exclusion at a specified distance, there might
be a potentia gradient which describes the long-range excluded volume. The result of some simple
calculations can show an extremely surprising result. No matter how good a "good"-solvent is,
the chain scaling follows the law given above. For dilute solutions of polymer chains
there are only three discrete states, Gaussian, Expanded, and Collapsed!! This
result is by no means self-evident from a chemical perspective.

In order to show that the goodness of solvation for good solvents does not effect the chain scaling,
consider the interaction energies for solvent, s, and polymer, p, siteson alattice; e,,, €, €, and

the number of contacts for a given conformation of a polymer chain; N,,, N, Ng. The overall

system energy is given by a sum of the components for a single chain system in a configuration
"I", B =-N,, e, - N &, - Nge.. Theaverage energy for all configurations with end to end
distance"R" is E( R). The probability of an excluded volume chain W(R), given above, needs to
be modified by a Boltzman distribution function which describes the thermal distribution based on
these interaction energies to give the probability of an excluded volume chain with specific
interaction energies, P(R),

_ é-E(RU
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The detailsof E(R) can be calculated. First, an average change in energy per lattice site for
solvation of a given solvent/polymer system can be given by De = 1/2(g,, + &) - €. Thevolume
fraction of polymer cellsisgivenby f = NV JR®. The average probability that a given lattice site
contains a polymer segment is f. The probability that a site neighboring a given site contains a

polymer segment isf times the coordination number, z. For PP interactions this probability must
be divided by 2 since this will involve two indistinguishable arrangements by exchanging the two
P sites. The average number of PP sitesis this probability times the number of segments, N,



The average number of SP sitesis (1-f ), the probability of a solvent in any site, times z, times the
number of P segments, N,

N, @N(1- f)

The average number of SS sitesis the number of SSsitesin a system with no polymer, N°,
minus the other two numbers for PP and SP given above. The expression for E(R) can be written

astermslinear inf and those independent of f,
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This expression can be used in the first equation of this section to yield,
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+ Terms independent of Rz

Here the chi parameter, c, can be defined asc = zDe/kT, and substituted in the above expression,
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which has the same functional form as the original "long-range" interaction expression with V.
being replaced by V. (1-2c) =V, the excluded volume as a function of goodness of solvent!
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This means that the goodness of solvent can be isolated as having an effect on chain persistence
rather than on chain scaling, the 5/3 dimension of an expanded coil (the normal condition for a
solvated chain) is retained regardless of the goodness of solvent. Solvation effects, goodness of
solvent, effect local chain rigidity or flexibility and not chain scaling!

Changes in Solvent Goodness with Temperature.

A polymer chain in agood solvent at some temperature T will have an excluded volume parameter,

V =V_(1- 2 zDe/(kT)), the second term in the brackets being smaller than 1 the coil will show
expanded scaling with a mass-fractal dimension of 5/3 and some effective persistence length, b, =

b/(1 - 2 zDe/(kT))*?, which is larger than that for a Gaussian coil since 1/(1 - 2 zDe/(kT))"? is
larger than 1. Asthe temperature is dropped within the good solvent regime the coil decreasesin
size while retaining good solvent scaling, mass-fractal dimension of 5/3, through changesin the

local persistence. Thiswill be acontinuous change until 2 zDe/(kT) approaches 1 with decreasing
temperature. At avery narrow (and specialized) temperature 2 zDe/(kT) will be exactly equal to 1
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and the coil will not display excluded volume at al! At this unique temperature the coil in dilute
solution will be Gaussian. This temperature is called the theta temperature, g, and has a unique

value for any polymer/solvent pair. The g-temperature is also sometimes caled the Flory
Temperature.

At the Flory-Temperature the mass-fractal dimension of the coil becomes uniquely 2 and the
parameter "b" can be uniquely observed. If the polymer solution is cooled below the theta-
temperature the polymer coil collapsesinto a"globule" which isahighly compact state related to
precipitation from solution. It isdifficult to obtain sufficient thermal control to access Gaussian
scaling in solution (£0.1°C is needed). Figure 1.6 on pp. 16 of Doi shows the coil-to-globule
trangition for dilute solutions of polystyrene whose theta temperature is close to 34.6°C in
cyclohexane. Notice the abrupt collapse of expanded coils and the tenuous position of the
Gaussian state close to the middle of thisrapid collapse in temperature.

The Globule state is of little interest to polymer scientists. It isof dominant importance to protein
physicists and other biophysicists since thisis the use state for most biopolymers. Because of the
latter the coil-to-globule transition has received extended treatment in the past 5to 8 years by
polymer theorists.

Blobs, Renormalized Groups and Chain Scaling.

The modern treatment of polymer coils involves adaptation of a number of concepts which are
native to other areas of physics such as critical phenomena, liquid crystals and superconductors.
The parallelsinvolve statistical summations of directional vectorsin thermally equilibrated systems.

From the above discussion it should be clear that variation of the step size, b, is hecessary to
describe chain structure. For instance, a group of mer units can be considered as a sub-unit for a
chain. Consider three cases below. In thefirst the chemical unit, b, is considered as the basic unit
and the end-to-end distance is <R*>"?=n"2 b. In the second, the chain is composed of groups of
mers which are themselves Gaussian so that the rms end-to-end distance, L, for agroup of k mers
isgiven by L = kY?b. The chain's end-to-end distance is described by <R*>"2= (n/k)* L. In the
third case k isalarger number and the same equations apply.

This technigue of redefining the chain by considering groupings of subunitsis abasic feature of a
technique termed renormalization of the chain. The basic features of the chain are not changed
by renormalization. R, and <R*>"2 for the coil are not changed by renormalization.

As the concentration of a polymer solution isincreased it is possible to obtain conditions where
thereisachangein coil scaling with size of observation (size of the circles in the diagram above).
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If the circle size in the above diagram is set to the size scale of this transition, the subunit of the
chainiscalled a blob. Through the use of renormalization and blobs much of the complicated
scaling features observed in high polymers can be simplified into universal laws. Thiswill be
discussed in detail in Chapter 2.

It should be noted that the original work on polymer coil conformation in the 1940's and 1950's
involved measurement of R and the end to end distance as a function of the molecular weight and
solvent conditions. The familiar Mark-Houwink equation is typical of the characterization of
polymers prior to Mandelbrot's seminal work on fracta systems and dimensiona analysis of
statistical systems. The Mark-Houwink equation describes the intrinsic viscosity of a polymer
solution in terms of two parameters, K and a, where ais a scaling coefficient for molecular weight,

[h]=KM?

Theintrinsic viscosity is proportiona to the rms end-to-end distance for a coil, so the parameter "a’
should be proportional to 1/d, where d, is the mass-fractal dimension. In polymer physics this
scaling relationship has been explicitly described for the rms end-to-end distance using the scaling

exponent n,
(R?Y% = b

nisequa to 1/d, in amore universal lexicon, athough rarely used in polymer physics.
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