
Vapor/Liquid/Solid Equilibria:

The formation of liquid droplets from a supersaturated vapor phase and the further reaction to
solid nanoparticles is a common route to large scale production of fine powders.  The
relationship between droplet size, r, surface tension, γ, molar volume of the liquid, vB and
saturation ratio, S = p/ps, is given by the Kelvin equation,

ln
p

ps

=
2σv B
rRT

This is almost identical to the Gibbs-Thompson equation and is derived in a similar way.  The
Gibbs free energy for a vapor with small particles of a condensed phase is given by,

G = nAµA p,T( ) + nBµB p,T( ) + 4πr2σ

where A and B refer to the vapor and particles.  p refers to the external pressure of the vapor.  At
equilibrium between the particle and the vapor phase the derivative of G with respect to nB is 0,
and since nB = 4πr3/(3vB),

0 = µB − µA + 4πσ
d r2( )
dnB

= µB − µA +
2σv B

r

We have,

dµA = v Adp  and  dµB = v Bdp

so, taking the derivative of the minimized free energy expression,

v A − v B( )dp = 2σv Bd
1

r

 
 

 
 

Using the ideal gas law, vA = RT/p, and realizing that vA >>vB,

RT
dp

p
= 2σv Bd

1

r

 
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 
 

Integrating from r = ∞, p = ps, to r and p gives the Kelvin equation above.

Laplace Equation:

The pressure inside a small liquid droplet is much higher than in the surrounding media due to
surface tension.  For a liquid droplet at equilibrium with its surroundings the work to add a small
amount of material, dv, to a droplet is equal to that required to extend the surface,
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pL − pV( ) 4πr2dr( ) =σ 8πrdr( )

so,

∆p = pL − pV( ) =
2σ
r

Droplets Containing Solute:

Typically in nanoparticle synthesis from a vapor state liquid droplets are not pure liquid but
contain a fixed amount of a solute which may be the precursor to a nanopowder.  As the droplet
equilibrates with its environment the total mass of solute remains fixed so that the concentration
may increase with diminishing particle size.  The vapor pressure of the solvent, p, for such a

droplet follows the Kelvin equation, ln
p

ps

=
2σv B
rRT

.  The equilibrium vapor pressure, ps, however,

is modified by the chemical activity, γ, for the solute,

ps = γxps,0

where x is the mole fraction solute.  The two effects compete and can stabilize small droplets as
shown in the figure of Friedlander below.

From Friedlander, SK "Smoke Dust and Haze" 2000
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If the volume of a droplet is decomposed into the solvent, v1 and solute, v2, contributions we can
write, Vdroplet = πdp

3/6 = n1 v1 + n2 v2.  This can be rearranged to,

1

x1

=1+
n2

n1

=1+
n2v 1

πdp
3

6 − n2v 2

substituting in the Kelvin equation yields,

ln
p

ps,0

=
4σv 1
dpRT

+ ln γ1 −ln 1+
n2v 1

πdp
3

6 − n2v 2

 

 

 
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 
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For an ideal solution and a dilute, non-surface active (γ = 1) solute a simplified expression is
obtained,

ln
p

ps,0

=
4σv 1
dpRT

−
6n2v 1
πdp

3

For small droplets the second term due to solute lowering of the vapor pressure dominates.  This
effect can lead to large super-saturations in small liquid droplets as shown by Junge, CE, "Air
Chemistry and Radioactivity" 1963.

Vapor Equilibria for Charged Particles:

The Gibbs free energy for a droplet-vapor system with charging of the droplet by ions is given
by,

G = nAµA p,T( ) + nBµB p,T( ) + 4πr2σ +
q2

2

1

ε0

−
1

ε
 
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  

 
 1

r
−

1
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 
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where r0 is the ion radius (Angstroms) and ε0 is usually 1 (Friedlander 2000).  Following the
Kelvin calculation the derivative of this free energy is set to 0 for variation of dnB = -dnA,

ln
p

ps

=
2σv B
rRT

−
q2v B

8πRTr4 1−
1

ε
 
 

 
 

Which is a similar result to the solute concentration effect except that the droplet size is two
orders smaller!  This ion effect was used in the cloud chamber experiments of Wilson (1927) to
track subatomic particles for which he won the Nobel Prize.  The figure below shows the
dramatic effect of charged ions on droplet stabilization.
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From Friedlander SK "Smoke Dust and Haze" 2000

Extension to Crystalline/Solid  Nanoparticles:

For a solid nanoparticle of size r, the Kelvin equation can be used to describe solid/vapor
equilibria.  The predicted pressure within a 5nm particle of NaCl, for example, in equilibria with
water vapor is on the order of 2000 bars!  This is due to the relatively large surface tension of
solid particles.  This is one way to view the Hoffmann-Lauritzen form of the Gibbs-Thompson
equation, modified to include vapor-liquid equilibria,

T∞ − Tr =
2T∞

∆H f ρ sr
σSL + 1−

ρS

ρL

 
 
  

 
 σ L
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 

  

(Peppiatt, Samples, Proc. Royal Soc. 345 387.)  The large pressure predicted by the Kelvin
equation can also effect the equilibria of heterogeneous chemical reactions, i.e. gas phase
catalysis using nanoparticle catalysts.  For a gas/solid phase reaction, νAA(solid) + νBB(gas) <=>
νCC(gas), the condition for chemical equilibria is given by,

υ i
i=1

N

∑ µi = 0
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If i = 1 is the solid phase and i = 2 to N are ideal gas phases, then for 2 to N,

µi = µi,0 T( ) + RT ln pi

The gas phase partial equilibrium constant, Kp, is defined by,

K p = pi
υ i

2

N

∏

So the condition for equilibria is,

−RT ln Kp = ν iµi
0

2

N

∑ + υ1µ1

The pressure and temperature in the solid phase governs the chemical potential of component 1.
Using the Laplace equation, ∆p = 2σ/r,

µ1 = µ1
0 +ν 1∆ps = µ1

0 +
2ν 1σ

r

and,

−RT ln Kp = ν iµi
0

2

N

∑ + υ1µ1 = ν iµi
0

2

N

∑ +
2υ1υ 1σ

r
= ∆GT

0 +
2υ1υ 1σ

r

Using the partial equilibrium constant for a planar surface, Kp,0,

−RT ln
K p

Kp,0

=
2υ1υ 1σ

r

This equation indicates that nano-particle catalysts enhance the reactivity for heterogeneous
gas/solid phase reactions due to the Laplace enhancement of pressure in small particles that
enhances thermodynamic activity.

Growth of Liquid Clusters from the Vapor Phase:

For a gas that is condensable into a liquid cluster containing g molecules we can write, Ag-1 + A1

<=> Ag.  This is similar to the liquid phase reaction considered earlier except that a gas phase
monomer immediately attaches to the liquid phase cluster on approach, while the liquid phase
must go through an evaporative process to be released form the liquid cluster.  If sg is the surface
area for a g-cluster, αg is the evaporative flux and β is the monomer flux to the cluster,

βsg−1ng−1 = αg sg ng
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at equilibrium and below the saturation vapor pressure.  The kinetic theory of gasses gives the
flux to the cluster,

β =
p1

2πmkT( ) 1
2

where p1 is the monomer partial pressure and m is the monomer mass.  The evaporative flux is
given by the Kelvin equation,

αs =
ps

2πmkT( ) 1
2

exp
4σvm

dpkT

 

 
  

 
 

where ps is for a flat surface.  By using these expressions in the rate balance above,

ng−1

ng

=
1

S
exp

2σvm

4π
3vm
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where S =p1/ps.  From this ratio the particle size distribution can be calculated,

ng = nsS
g exp

−3σvm

4π
3vm
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where ns = ps/kT, and S = p1/ps.  For S<1 the function decays with g.  For S > 1 the function has a
minimum at dp* given by,

dp* =
4σvm

kT ln S

The number of critical nuclei is given by,

ng* = n1 exp
−16πσ 3vm

2

3 kT( )3
ln S( )2
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