Coagulation Theory and The Smoluchowski Equation:

Coagulation is defined as growth of particles by collisions among particles. It isusually
associated with dense, 3-d growth, in contrast to aggr egation which leads to low dimension,
branched structures. The process of coagulation usually is associated with sintering and
coalescence of particles by Gibbs-Thompson maturing and through strong van der Waals
bonding of the particles. Then the result of coagulation is usually considered a solid 3-d particle.
Agglomeration is similar to coagulation but, for the most part, does not include coal escence of
the particles so that an agglomerate can be "broken down™ in to the units of which it is made
while a coagulated particle can not be broken down exactly into the subparticles from which it
grew.

In aerosol and other gas phase growth the time rate of change of particle size distribution is of
primary interest. In ageneral sense we can consider two types of particles, with volumes, v, and
v;. Therate of collision betweeni and j particlesisN;. For spherica particles, each diameter of
particles has aunique volume. The collision of two particles leads immediately to the growth of
anew particle with the summed volume of the two contributing particles. The concentration of
particles"i" isn, and that of "j" isn,. We can define the collision frequency function, by, by,
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For one such collision, anew particle, k", is formed of volume v, =v; +v,. Therate of
formation of "k" particlesis,
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Thisisthe Smoluchowski equation (1917). The equation converts the problem of the
determining the evolution of a spectrum of particle sizes to the problem of determining the
collision frequency function, b;,. The functional form for b;; depends on the transport
mechanisms at play in the system. The equation is based on instantaneous bonding of particles
after collision.



Deter mination of b; for Brownian Motion of Particles:

For nanoparticles (particles smaller than 1 um) Brownian motion governs the collision
frequency. For a spherical particle of radius g with a coordinate system fixed on its center, and
particles, g, surrounding it and subjected to Brownian motion, the g particles diffuse to the
surface of g. a isaperfect sink since the particles bond by van der Waals interactions. We
consider that n, = 0 at 3+a. Fick’ssecond law for the spherical particle, g, is given by,
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Wehaveatr=a+g,n =0foralt andforr>a+g,atimet=0, n =n,. Fick’ssecond law can

be rewritten in terms of the dimensionless parameters,
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The boundary conditions becomex = 0; w=1for all tand x > 0;t =0, w =0. Thisisal-d

diffusion equation so the solution is,
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The steady state solution isobtained at t => ¥, w=>1, sO
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Fick’sfirst law can be used to calculate the flux of a particlesto g (atr=3a + g),
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and the rate of collision, F(t), isgiven by,
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From the expression for n above,
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which is minimum value of the time function since “j” particles have, for the most part diffused
away or coagulated.

We must also consider Brownian diffusion of the “i” particle which was fixed in the previous

assessment. The Einstein equation gives the relative displacement of “i” and “j” particles,
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since the two particles are not correlated in motion, i.e. the motion is random.

The collision frequency function, b;(v;, v;),

b, (v.v;)=4p(D +D))(a +a,)



for steady state. For 0.1um particles the time constant deciding steady stateis about 1 x 10 sec
allowing for this approximation.

The Stokes-Einstein equation gives D =kT/(3pnd,) for the continuum regime, so
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In the free molecular regime the functions described in the previous section are used for D and,
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which is based on the kinetic theory of gasses.

Free Molecular Range

An interpolation function can be found in Fuchs, NA Mechanics of Aerosols, Pergamon Press,
NY (1964). Thisfunction shows amaximum collision frequency for Kn» 5. Collision
frequency is highest for particles with widely separated sizes, favoring monomer cluster growth
for instance.

Development of a Particle Size Distribution by Coagualtion:

For a monodisperse system undergoing coagulation, initialy v, = v;,
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This can be inserted in to the Smoluchowski equation to yield,
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The total number of particles per unit volume, N, =Sn.. The Smoluchowski equation can be
written for the rate of change for the total particle number per unit volume,
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The discrete size distribution can be obtained by considering the solution to the kinetic growth
equations for a series of sizes, for k = 1,
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wheret = 2/(K N(0)) = 3m(4kT N, (0)). For k > 1 the distribution has a maximum in time as
shown in the figure from Smoluchowski (in Friedlander’ s book) below. For higher k the peak
occurs at longer times. Since particles are growing, the total number decays with time.

This model is appropriate for small t/t, where the particle size distribution is close to
monodisperse. This might be applicable to a batch system, or a plug flow reactor.

At long times the curves shown for particle size as afunction of time begin to show asimilar
shape, although shifted in time and k. Thisis the source of a self-preserving shape to the size
distribution. That is, the size distribution, when scaled with dimensionless numbers, retains the
same shape, so is called self-preserving. For the result of the Smoluchowski equation for
constant collision frequency the self-preserving distribution has the form,

where h = k/<k>and ,k.=N, (0)/Ny(t). We can rearrange the size distribution as,
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Figure 7.2 The variations in Neo, 11, n2, . . . with time for an initially monodisperse aerosol. The total
number concentration, N, and the concentration of n; both decrease monotonically with increasing
time. The concentrations of n5 . . . pass through a maximum. (After Smoluchowski, 1917)

Friedlander SK, Smoke Dust and Haze, 2000
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sincet = <k>-1, h = (k-1)/(<k>-1). Then the asymptotic limit of the size distribution is self-
preserving.

Similarity Solutionsfor Particle Size Distributions due to Coagulation (Self Preserving):

If it isassumed that the fraction of particlesin agiven size range is afunction of the particle
volume normalized by the average particle volume then,
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where<v>=f /N, and y isafunction describing the particle size distribution which is not time
dependent. Since n isthe particle number per unit volume both sides of this equation are

dimensi oniess Since d(v/<v>) = dv/<v> = (N,/f )dv,
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for n,(d,, t) can also be obtained,
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For Brownian coagul ation we have,
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For a continuous distribution function the coagulation equation is,
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when the similarity form is substituted (4’ th equation above).

For a continuous distribution the change in total number concentration with timeis,
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By substitution of the similarity distribution for n(v,t) and the continuum definition of b, we
obtain,

¥ ¥
M = 2T (11 ab)NZ where a= (h**ych and b= Oh'*'§ dh
dt 3n 0 0

Continuum Regime

This has the same functionality as Brownian coagulation from a monodisperse system,
dn, K N2

dt 2 . This expression can be used in the continuous distribution function above (long
function) and an ordinary intergrodifferential equation for y intermsof h results. This means
that the ssimilarity solution for Brownian coagulation is a possible particular solution. The
solution can be found using the integral definitions of N, and f given above. The functionis
solved for the upper and lower ends of the distribution and then the compl ete distribution can be
obtained numerically using these limits. The numerical solution is shown below (from

Friedlander’ s book)
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Figure 7.8 Self-preserving particle size distribution for Brownian coagulation. The form is approx-
imately lognormal. The result obtained by solution of the ordinary integrodifferential equation for
the continuous spectrum is compared with the limiting solution of Hidy and Lilly (1965) for the
discrete spectrum, calculated from the discrete form of the coagulation equation, Shown also are points
calculated from analytical solutions for the lower and upper ends of the distribution (Friedlander and
Wang, 1966).

Shown below is a comparison of experimental measurements on coagulation in tobacco smoke
with the predictions of the figure above.
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Figure 7.9 Comparison of experimental size distribution data for tobacco smoke with prd
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based on self-preserving size spectrum theory. ¢ = 1.11 x 1077, Noo = 1.59 x 10" em™."13
in the number distribution measured in this way occurs at d, = 0 2 pm (Friedlander and Hid:

Similarity Solution in the Free Molecular Regime:

Generally, when the collision frequency function, b(v, <v>), is a homogeneous function of v, it
can be transformed to an ordinary integrodifferential equation. If an ordinary integrodifferential

equation can be made it must also satisfy the integral boundary conditions and constraints. For
the free molecular range we have,
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Thisis ahomogeneous function of order 1/6 in particle volume. The similarity transformation

can be made and a numerical solution can be found. The rate of change of the total number of
particlesis given by,

Free Molecular Range

d\N, _ a3 d/g%delil/Nn/e
dt - ngﬂ g

where ais an integral function of y with avalue of about 6.67. An example of numerical

simulation (Monte Carlo) versus experimental observation for particle size distribution is shown
below from Friedlander’ s text.
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Figure 7.11 Coagulation of aerosol particles m
smaller than the mean free path. Size distribul
measured with the electrical mobility analyzer (H
1971).
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The self-preserving distribution can be approximated by alog-normal distribution function with

S, = 1.44 for the continuum regime and s ; = 1.46 for the free molecular regime. If theinitial
distribution of particlesis also alog-normal distribution, the time to reach the self-preserving

distribution (SPD), t,, isafunction of the initial distribution, s,
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whichisdueto Vemury, S and Pratsinis, SE (1995)J. Aerosol Sci. 21, 175. For 1 nm particles at
1800 K the SPD is reached in on the order of 1 microsecond. The figure below from Vemury
(Friedlander) shows this behavior. The dip corresponds to the SPD geometric standard
deviation.
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Figure 7.13 Dimensionless time to reach the SPD for initially lognormal size dlstl’lblltl:,
function of o,0. (After Vermury et al., 1994.) The sharp minimum corresponds to the value of
an initially self-preserving free molecule aerosol. i

For initially monodisperse distributions the time to reach SPD was also cal culat: by '
Vemury/Pratsinis,
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