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Coagulation Theory and The Smoluchowski Equation:

Coagulation is defined as growth of particles by collisions among particles.  It is usually
associated with dense, 3-d growth, in contrast to aggregation which leads to low dimension,
branched structures.  The process of coagulation usually is associated with sintering and
coalescence of particles by Gibbs-Thompson maturing and through strong van der Waals
bonding of the particles.  Then the result of coagulation is usually considered a solid 3-d particle.
Agglomeration is similar to coagulation but, for the most part, does not include coalescence of
the particles so that an agglomerate can be "broken down" in to the units of which it is made
while a coagulated particle can not be broken down exactly into the subparticles from which it
grew.

In aerosol and other gas phase growth the time rate of change of particle size distribution is of
primary interest.  In a general sense we can consider two types of particles, with volumes, vi and
vj.  The rate of collision between i and j particles is Nij.  For spherical particles, each diameter of
particles has a unique volume.  The collision of two particles leads immediately to the growth of
a new particle with the summed volume of the two contributing particles.  The concentration of
particles "i" is ni and that of "j" is nj.  We can define the collision frequency function, βij, by,

Nij = βij(vi, vj, T, P, etc.) ni nj

For one such collision, a new particle, "k", is formed of volume vk = vi + vj.  The rate of
formation of "k" particles is,
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The rate of loss of particles "k" due to collision with other particles is,
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∑ n in j − nk β v i ,v k( ) ni
i=1

∞

∑

This is the Smoluchowski equation (1917).  The equation converts the problem of the
determining the evolution of a spectrum of particle sizes to the problem of determining the
collision frequency function, βij.  The functional form for βij depends on the transport
mechanisms at play in the system.  The equation is based on instantaneous bonding of particles
after collision.
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Determination of βij for Brownian Motion of Particles:

For nanoparticles (particles smaller than 1 µm) Brownian motion governs the collision
frequency.  For a spherical particle of radius ai with a coordinate system fixed on its center, and
particles, aj, surrounding it and subjected to Brownian motion, the aj particles diffuse to the
surface of ai.  ai is a perfect sink since the particles bond by van der Waals interactions.  We
consider that nj = 0 at ai+aj.  Fick’s second law for the spherical particle, ai, is given by,

∂n

∂t
= D

∂ r2 δn δr( )
r2∂r

We have at r = ai+aj, nj = 0 for all t, and for r > ai+aj, at time t = 0, nj = n∞.  Fick’s second law can
be rewritten in terms of the dimensionless parameters,
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The boundary conditions become x = 0; w = 1 for all t and x > 0;t = 0, w =0.  This is a 1-d
diffusion equation so the solution is,
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w =1− erf
x ai + a j( )
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The steady state solution is obtained at t => ∞, w=>1, so

n∞ − n
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⇒
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Fick’s first law can be used to calculate the flux of aj particles to ai (at r = ai + aj),
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and the rate of collision, F(t), is given by,
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At steady state, t >> (ai + aj)
2/D,

F(t) = 4πD ai + a j( )n∞

which is minimum value of the time function since “j” particles have, for the most part diffused
away or coagulated.

We must also consider Brownian diffusion of the “i” particle which was fixed in the previous
assessment.  The Einstein equation gives the relative displacement of “i” and “j” particles,

Dij =
x i − x j( )2

2t
=

xi( )2

2t
+

x ix j( )
2t

+
x j( )2

2t
=

x i( )2

2t
+
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2t
= Di + D j

since the two particles are not correlated in motion, i.e. the motion is random.

The collision frequency function, βij(vi, vj),

βij vi ,v j( ) = 4π Di + D j( ) ai + a j( )
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for steady state.  For 0.1µm particles the time constant deciding steady state is about 1 x 10 -3 sec
allowing for this approximation.

The Stokes-Einstein equation gives D =kT/(3πµdp) for the continuum regime, so

βij vi ,v j( ) =
2kT
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In the free molecular regime the functions described in the previous section are used for D and,
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which is based on the kinetic theory of gasses.

An interpolation function can be found in Fuchs, NA Mechanics of Aerosols, Pergamon Press,
NY (1964).  This function shows a maximum collision frequency for Kn ≈ 5.  Collision
frequency is highest for particles with widely separated sizes, favoring monomer cluster growth
for instance.

Development of a Particle Size Distribution by Coagualtion:

For a monodisperse system undergoing coagulation, initially vi = vj,

βij = K =
8kT

3µ Continuum Range, Monodisperse

This can be inserted in to the Smoluchowski equation to yield,

∂n k

dt
=

K

2
nin j − Kn k

i + j= k

∑ ni
i=1

∞

∑

The total number of particles per unit volume, N∞ =Σni.  The Smoluchowski equation can be
written for the rate of change for the total particle number per unit volume,

∂N∞

dt
=

K

2
nin j

i + j= k

∑
k= 1

∞

∑ − KN∞
2 = −

K

2
N∞

2

so,

N∞ =
N∞ t = 0( )

1+ KN∞ t = 0( ) t /2( ) =
N∞ t = 0( )
1+ t /τ( )



5

The discrete size distribution can be obtained by considering the solution to the kinetic growth
equations for a series of sizes, for k = 1,

dn1

dt
= −Kn1N∞   or  n1 =

N∞ t = 0( )
1+ t/τ( )2

and for k = 2,

dn2

dt
=

Kn1
2

2
− Kn2N∞  or  n2 =

N∞ t = 0( ) t /τ( )
1+ t /τ( )3

In general,

nk =
N∞ t = 0( ) t /τ( ) k− 1

1+ t /τ( ) k+1

Continuum range, Constant Collision Frequency from
Monodisperse System

where τ = 2/(K N∞(0)) = 3µ/(4kT N∞(0)).  For k > 1 the distribution has a maximum in time as
shown in the figure from Smoluchowski (in Friedlander’s book) below.  For higher k the peak
occurs at longer times.  Since particles are growing, the total number decays with time.

This model is appropriate for small t/τ, where the particle size distribution is close to
monodisperse.  This might be applicable to a batch system, or a plug flow reactor.

At long times the curves shown for particle size as a function of time begin to show a similar
shape, although shifted in time and k.  This is the source of a self-preserving shape to the size
distribution.  That is, the size distribution, when scaled with dimensionless numbers, retains the
same shape, so is called self-preserving.  For the result of the Smoluchowski equation for
constant collision frequency the self-preserving distribution has the form,

Nk ~e-η

where η = k/<k> and ,k.=N∞(0)/N∞(t).  We can rearrange the size distribution as,

nkN∞(0)

N∞
2 =

t /τ( ) k− 1

1+ t /τ( )k−1

nkN∞(0)
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τ
t
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 

 

 
 
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1−k( )τ / t

For large t/τ,
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Friedlander SK, Smoke Dust and Haze, 2000

1+
τ
t
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t / τ

⇒ e

and

nkN∞(0)

N∞
2 = e−η

since τ = <k>-1, η = (k-1)/(<k>-1). Then the asymptotic limit of the size distribution is self-
preserving.

Similarity Solutions for Particle Size Distributions due to Coagulation (Self Preserving):

If it is assumed that the fraction of particles in a given size range is a function of the particle
volume normalized by the average particle volume then,

n v,t( )N∞(0)dv

N∞

=ψ
v

< v >
 
 
 

 
 
 d

v

< v >
 
 
 

 
 
 
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where <v> = φ/N∞, and ψ is a function describing the particle size distribution which is not time
dependent.  Since n is the particle number per unit volume both sides of this equation are
dimensionless.  Since d(v/<v>) = dv/<v> = (N∞/φ)dv,

n v,t( ) =
N∞

2

φ
ψ η( )

where η = v/<v> = N∞v/φ, 
N∞ = ndv,  φ = nvdv ,  n(v) ⇒ 0  when v ⇒ 0 or ∞.

0

∞

∫
0

∞

∫
  An expression

for np(dp, t) can also be obtained,

nd dp ,t( ) =
N∞

4 / 3

φ1/3 ψd ηd( )

where ηd = dp(N∞/φ)1/3.

For Brownian coagulation we have,

βij vi ,v j( ) =
2kT

3µ
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For a continuous distribution function the coagulation equation is,

∂n

∂t
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1

2
β < v >,(v− <v >)( )n < v >( )

0

v

∫ n v− < v >( )d < v > − β v,< v >( )n v( )n < v >( )d < v >
0

∞

∫
Continuous Distribution

which becomes,
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3µ
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0

η
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                                  −
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3µ
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when the similarity form is substituted (4’th equation above).

For a continuous distribution the change in total number concentration with time is,

dN∞

dt
= −

1

2
β v , v( )

0

∞

∫
0

∞

∫ n v( )n v( )dvd v
Continuous Distribution
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By substitution of the similarity distribution for n(v,t) and the continuum definition of β, we
obtain,

dN∞

dt
= −

2kT

3µ
1+ ab( )N∞

2   where  a = η1/3ψdη  
0

∞

∫ and  b = η−1 / 3ψdη 
0

∞

∫
Continuum Regime

This has the same functionality as Brownian coagulation from a monodisperse system,
dN∞

dt
= −

K

2
N∞

2

.  This expression can be used in the continuous distribution function above (long
function) and an ordinary intergrodifferential equation for ψ in terms of η results.  This means
that the similarity solution for Brownian coagulation is a possible particular solution.  The
solution can be found using the integral definitions of N∞ and φ given above.  The function is
solved for the upper and lower ends of the distribution and then the complete distribution can be
obtained numerically using these limits.  The numerical solution is shown below (from
Friedlander’s book)

Shown below is a comparison of experimental measurements on coagulation in tobacco smoke
with the predictions of the figure above.
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Similarity Solution in the Free Molecular Regime:

Generally, when the collision frequency function, β(v, <v>), is a homogeneous function of v, it
can be transformed to an ordinary integrodifferential equation.  If an ordinary integrodifferential
equation can be made it must also satisfy the integral boundary conditions and constraints.  For
the free molecular range we have,

βij vi ,v j( ) =
3

4π
 
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 
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 
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6kT

ρ p
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+
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  

1 / 2

v i
1/3 + v i

1 / 3( )2

Free Molecular Range

This is a homogeneous function of order 1/6 in particle volume.  The similarity transformation
can be made and a numerical solution can be found.   The rate of change of the total number of
particles is given by,

dN∞

dt
= −

α
2

3

4π
 
 
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1 / 6
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  

1 / 2

φ1 / 6N∞
11/6

where a is an integral function of ψ with a value of about 6.67.  An example of numerical
simulation (Monte Carlo) versus experimental observation for particle size distribution is shown
below from Friedlander’s text.
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The self-preserving distribution can be approximated by a log-normal distribution function with
σg = 1.44 for the continuum regime and σg = 1.46 for the free molecular regime.  If the initial
distribution of particles is also a log-normal distribution, the time to reach the self-preserving
distribution (SPD), tsp, is a function of the initial distribution, σg0,
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tsp = τ f
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 

1 / 6
6kT

ρ p

 

 
  

 

 
  
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which is due to Vemury, S and Pratsinis, SE (1995)J. Aerosol Sci. 21, 175.  For 1 nm particles at
1800 K the SPD is reached in on the order of 1 microsecond.  The figure below from Vemury
(Friedlander) shows this behavior.  The dip corresponds to the SPD geometric standard
deviation.

For initially monodisperse distributions the time to reach SPD was also calculated by
Vemury/Pratsinis,
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tsp = 13
2kTN∞ 0( )

3µ
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