Aggregate Growth:

Mass-fractal aggregates are partly described by the mass-fractal dimension, d;, that defines the
relationship between size and mass,

R=aN""

where a isthe lacunarity constant, R is the aggregate overall size and N is the number of primary
particlesin an aggregate. The mass-fractal dimension ranges from 1 to 3in 3-d space. The
growth of aggregates was first modeled using computer simulationsin the 1980-90's. Some
discussion of the approaches and results form these simulations will be given below. The
Smoluchowski equation can aso be modified for mass-fractal aggregation and thisis of the most
flexibility since generalized results and conditions can be determined. Additionally, self-
preserving distributions have been determined for the Smoluchowski approach that enable a
general treatment of mass fractal aggregation.

Simulations of Nano-Particle Aggregate For mation:

The growth of aggregates can be simulated by making simple assumptions concerning
transport of particles to the growing agglomerate and the events which occur when a primary
particle or cluster collide with the growing aggregate. Depending on the relative kinetics of
these two processes, growth can be diffusion limited, similar to the original Smoluchowski
equation, or reaction (collision) limited. Additionally, one can consider only monomer/cluster
collisions or include cluster/cluster collisions as growth proceeds, such as might be expected in
the free molecular range. If one considers the primary particle as a point object, then the fractal
dimension of the growing aggregate should increase form a 0 dimensional point object to a1
dimensional linear structure, to a branched chain of dimension on the order of 2 as growth
proceeds. Theincrease in dimension with growth is anatural consegquence of the persistence of
velocity for nano-particle Brownian motion combined with the random path of the colliding
particles. The branch content of the growing aggregate should be a function of ...

As growth proceeds, the presence of branches and the convoluted shape of the growing
aggregate, reminiscent of the Brownian path of the colliding particles, shields the interior
bonding sites from further growth. For this reason three-dimensional growth is not possible,
except by internal rearrangement. Then we can consider that an asymptotic mass fractal
dimension is approached in time that is a function of the persistence of the colliding particle
velocity, |, and the degree to which monomers dominate over cluster transport. The latter issue
isrelated to the diffusion coefficient in the media and thus, the Knudsen number. In all
simulations of mass-fractal aggregation an asymptotic dimension has been observed at long
times. This means that the overall density of the aggregate, N/R® » N®¥® diminishes with time
in the asymptotic range since N is a monotonically increasing function of time.

Diffusion Limited Aggregation:

In the simplest ssimulations, P. Meakin (1980’ s) of diffusion limited aggregation
aggregates of dimension 2.5 are produced by fixing an initial primary particle at the origin of a
three-dimensional lattice and allowing arandom walk of primary particles, one at atime,
randomly released from the edge of the lattice until either collision or loss of the particle from
the fixed volume lattice occur. Despite the simplicity of this model, the dimension 2.5is



repeatedly seen in aggregates produced with low primary particle concentration and high
reactivity towards bonding. The persistence of velocity is the same as the primary particle size
inthis case. The cluster isimmobile compared to the primary particle, so this could be
considered either continuum transport or free molecular transport for the monomer and
continuum transport for the aggregate.

If the concentration of primary particlesis higher, and cluster cluster aggregation is
allowed the mass-fractal dimension is reduced to 1.8 for diffusion limited aggregation
simulations. These simulations are conducted by randomly distributing primary particleson a
lattice, and allowing all primary particles to collide and form aggregates which aso move by
Brownian motion and further aggregate to form low dimensional branched structures. The
persistence of velocity is constant in these simulations regardless of particle mass, | ,, = d.,..
Additionally, variation in diffusion coefficient with particle massis not accounted for so this
simulation might reflect free molecular conditions for both agregates and primary particles.

The extreme of persistence of velocity is aballistic growth simulation where primary
particles follow alinear path to the growing aggregate. For ballistic, monomer-cluster growth,
similar to the first smulation discussed, three-dimensiona aggregates are produced. If cluster-
cluster aggregation is allowed, similar to the second simulation above, mass-fractal's of
dimension 1.95 are produced. For this case the persistence of velocity for monomers and
aggregates is larger than the lattice diameter.

When persistence of velocity relative to primary particle size and variability of the
diffusion coefficient with particle size and transport regime are considered in more complicated
simulations the results are qualitatively similar to the simple simulations mentioned above. In
the free molecular range Mountain found values of df of 1.89 to 2.07 for diffusion limited
cluster-cluster aggregation, for instance.

The aggregates that are produced by computer simulation are not monodispersein N.
Generally, the mass distribution of aggregates reach a self-preserving form indicating that an
analysis based on the Smoluchowski equation as done for coagulation may be possible for
aggregation as was done by Friedlander and is discussed below.

Reaction Limited Aggregation Simulations:

A sticking probability can be introduced into simulations to account for the probability of
aparticle or cluster bonding with the growing aggregate on impact. The importance of a stinking
probability isthat a particle just after collision that does not stick has a much higher probability
to transport by Brownian motion to the same or another local site on the aggregate. Then the
colliding particles can probe the surface of the growing aggregate. Additionally, colliding
particles can become “trapped” by high coordination number regions of the aggregate since
trandation away from a site bounded by multiple aggregate subunits has alower probability.
The net effect of a sticking probability isto allow atype of local rearrangement towards multiply
coordinated bonding. Thisdirectly leadsto higher dimension aggregates. For primary particle-
cluster growth with alow sticking probability three-dimensional aggregates are formed. If
cluster-cluster aggregation is alowed a mass-fractal aggregate is formed with a dimension of
2.09 which islarger than that observed for diffusion limited aggregation (1.8).

Other Dimensional Descriptions of Mass Fractal Aggregates:



The mass-fractal dimension, together with the aggregate size, and primary particle size
yield a partial description of a mass-fractal aggregate that is sufficient for the study of some
aspects of growth and some properties, especially those related to mass/volume ratios. However,
the mass-fractal description is not intended to be a complete description. For instance, given the
mass-fractal dimension and size information it is not possible to reconstruct afacsimile of the
aggregate without making assumptions concerning the branch content. If you aretold that an
object has asize of 100nm and is composed of 1 nm primary particles with adimension of 2 the
object could range from the regular object, adisk of thickness 1 nm and diameter 100nm with
10,000 primary particles, to alinear chain of diameter 100nm composed of 1 nm steps on a
random path that is composed of 10,000 steps. From the mass-fractal dimension thereis no
possibility of distinguishing between these objects.

Dimensional analysis can be used to describe a variety of features beyond the mass-size
scaling. For instance, the spectral dimension is used to describe the energy distributionin a
mass-fractal object, the chemical dimension is used to describe the reactivity of a mass-fracta
structure and the connectivity dimension is used to measure the branch content of a mass-fractal
structure. The number of primary dimensions that could be defined for a given object isonly
limited by the number of observable features that exist for the object. A primary dimension
reflects afundamental scaling feature for an object. One feature of a primary dimension in three
dimensional spaceisthat the valueis equal to the mass-fractal dimension for regular objects and
itsvalueis equal to or less than the mass fractal dimension for fractal objects. Because of the
wide range of dimensions that can be defined for various systems, the field of dimensional
analysis based on fractal conceptsis challenging to understand. Nonetheless, at least two
dimensional values are necessary for even the most rudimentary understanding of aggregation,
i.e. in order to distinguish between adisk and alinear random walk.

If we consider branching in mass-fractal aggregates, a natural measure of the object isthe
minimum path or primitive path, or number of steps, required to traverse the object between the
furthest pointsin the aggregate, L. For adisk, L isthe diameter of the disk, while for alinear
random walk with no branching, L isthe degree of aggregation, N. The scaling between L and N
yields the connectivity dimension, C, for the aggregate,

L°=BNI
Where B is a scaling prefactor similar to the lacunarity for mass-fractal scaling. For alinear
chainL » NsoC=1. Foradisk L?» NsoC=2=d, Cisaprimary dimension. The number
of branches, n,,, in amass-fractal aggregate can be determined from C since,

N, » N/L
The average coordination number for monomers in the aggregate, ¢,, is given by,
¢y =n,/N» 1/L
The average coordination number can be determined from simulations and it is found to reach an
asymptote in fractal growth.
The mass-fractal and connectivity dimensions are not independent in the sense that

branched objects of the same path dimension have a larger mass-fractal dimension. For example
alinear, Gaussian chain has a mass fractal dimension of 2 and a connectivity dimension of 1.



For arandomly branched chain that follows a Gaussian path the mass fractal dimension is 2.5
and the connectivity dimension is close to 2.

Application of the Smoluchowski Equation to Mass Fractal Aggregaton:

The Smoluchowski equation translates the problem of calculating particle growth rate, dn/dt, to
the problem of determining the collision frequency function, b;. For single particlesin the free
molecular range,
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where the single underlined part corresponds to the collision cross section for i and j aggregates
and the double underlined part corresponds to the average relative velocity between
agglomerates. b;.reflects the average hydrodynamic volume swept by the two agglomerates.

For the free molecular regime the aggregate is completely draining and the hydrodynamic
volume of the aggregate is N, v, where N, is the degree of aggregation and v, is the volume of
aprimary particle,
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R isthe “hydrodynamic radius’ of the aggregate for the continuum range, i.e. non-draining
range. In the continuum range the aggregate, with respect to diffusion, is a sphere like object.
So while the velocity depends on a Rouse like model, ., = N, f,, the aggregate cross section is
viewed from a non-draining hydrodynamic perspective. The reason for thisissimple, if the
aggregates are rigid structures, then penetration between aggregates is unlikely, especially when
d; 3 2, while, small molecules can easily penetrate the aggregates in the free molecular range.
This picture breaks down when d; < 2 since it rapidly becomes possible for aggregates to
penetrate the hydrodynamic sphere of each other, for instance the hydrodynamic sphere for arod
isasphere of diameter L. Two rigid rods can easily penetrate each others hydrodynamic radius
by lining up. Thisisnot truefor d, 3 2. Additionally, the projected cross section of an object of
d; < 2 will depend strongly on the orientation of the object. Again thisisnot necessarily true for
arandom mass-fractal object with d; 3 2.

Aswas shown earlier, the calculation of the diffusion coefficient for a mass-fractal aggregate
requires, apriori, avaue for the mass fractal dimension. The calculation using the
Smoluchowski equation yields a different result than the typical goal of the computer simulations
mentioned above. Most computer simulations seek to determine the mass fractal dimension and
perhaps the connectivity dimension as a function of growth conditions, while the Smoluchowski
equation seeks to describe the aggregate growth rate and aggregate size distribution with the
fractal dimension as an input parameter.



The collision cross section, single underlined term above, is determined by the average fractal
..df
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Free M olecul, for fractas of dimension between 2 and 3,

CrossSection»(R+R) » I)Gf+j}/df

Substituting for the mass of the aggregates in the first equation and this expression for the cross

section we have,
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For the continuum regime the collision kerndl is,
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b(v,v,) =4p(d,+d,)(D,+D;)  Continuum Regime

where dpi isthe collision diameter for the agglomerates. For fractal aggregates we have,

D ~ Dy/N, = (d/d,)" D, Free Molecular Range
D~ D1/N Vel = (d,/ dagg) D, Continuum Range

and for large aggregates the continuum regime is used so,
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Self-Preserving Aggregate Size Distributions:

The collision kernels give above are homogeneous functions of the colliding aggregate volume,
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for the continuum regime| = 0. Since the kernels are homogeneous the distributions reach an
asymptotic self-preserving distribution. The self-preserving equation is given by,



v isthe solids fraction of the aggregate, and f is the volume fraction of solids in the system.
The particle number density, Ny, decays with,

N, _ 1
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using the free molecular regime collision kernel given above, and the self-preserving number
distribution give above,
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and "a" isan integral function of the self-preserving distribution function above. Vauesfor aare
given by Friedlander from Monte Carlo calculations,
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Figure x‘:lsl Sell-preserving size distributions of ieglomerates of variows 3 in the free mol
regime. Values of W, and " : g ol oligule
el v and w are tabulared in the ociginal reference. {Afier Vemury and Pratsings,

Aggregate self-preserving distributions solved using a discrete sectional model are shown in the

figure above (Vemury and Pratsinis). The time to reach the self preserving size distribution was
also calculated by Vemury and Pratsinis and is shown in the figure below. In both cases the self-
preserving limit is reached faster than spherical clusters.
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Figure 8.6 Time needsd (fime bigh for a monodispene servssl to reach the
preserving size distribution in ibe frez molecule (ry) and continuum iT.) regimes = 2
Tractal dimens.on, Dy, (Afier Yemury and Praisinis, [995,)




