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as a whole show & pronounced dependence on the molar mass, as relaxation
then has to propagate over larger and larger distances. Flow behavior is gov-
erned by these sluggish modes and therefore sets up the terminal region,
Le., the long time end, of the spectrum of Telaxations.

The rates of the relaxatory modes in a sample do not cover the whole spec-
tral range homogeneously, but usually one observes a separation into several
zones where relaxation rates are accummulated. Each zone belongs to a group
of processes with similar roots. Tt has become a convention to designate these
different groups by Greek letters, a, 8 and 7, and to use the symbol o for
the process with the lowest transition rates showing up at the highest tem-
perature. On the other hand, the symbol v is used for the processes observed
at the low temperature end and this means those with the highest transition
rates.

In the remaining part of this chapter, we discuss the properties of some
major groups of relaxation processes in polymers as there are

¢ local processes, to be observed in the glassy state;

¢ cooperative processes in longer chain sequences that provide the basis for
the elasticity of rubbers and the viscoelasticity of polymer melts;
chain diffusion, which controls the flow behavior; and
specilic processes in partially crystalline states, associated with coupled
motions of sequences in the crystallites and the amorphous regions.

6.3.1 Local Processes

Figure 6.7 shows the results of a dynamic shear experiment carried out on
poly(cyclohexyl methacrylate) (PCHMA) in the glassy state. One observes
arelaxation process that produces 2 loss maximum just in the frequency range
of the mechanical spectrometer. With increasing temperature the position of
the loss maximum shifts to higher values.

Considering the chemical constitution of PCIHMA, there is an obvious
assignment for this “y-process’ It reflects the flip-motion between the chair-
conformation and the boat-conformation of the cyclohexane sidegroup. Since
this process changes the shape of the sidegroup, it couples to the applied
shear field. The assignment is corroborated by the observation that this pro-
cess shows up whenever a cyclohexyl group is attached to a polymer chain,
The relaxation rates were similar for all samples investigated, as expected for
a mode with local character.

Figure 6.8 shows the temperature dependence of the relaxation rate in an
Arrhenius-plot. The data were obtained in several experiments on polyacry-
lates and poly(methylacrylates) with pendant cyclohexyl groups. The linearity
of the plot is indicative of an activated process, the relaxation time being given
by the Arrhenius law
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Fig. 6.7. Frequency dependence of the mechanical loss tangent measured for
PCHMA at the indicated temperatures (after Heijboer [68])
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Fig. 6.8. 'Tempéra.ture dependence of the relaxation rates of the ~v-process in poly-

acrylates (open symbols) and poly{methacrylates) (filled symbols) with pendant cy-
clohexyl groups. Data from Heijboer [69]

The relaxation rate 71 equals the rate of transitions between the two confor-
mational states. The obsérved activation energy, A = 47kJ mol~?, therefore

has to, be identified yé?iﬁﬁ"the height of the energy barrier that has to be passed
over during a change.
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A remarkable fact to be noted in Fig. 6.7 is the constancy in the peak
amplitude and the shape of the loss curves when varying the temperature.
This behavior, in combination with the regular temperature shift according
to Arrhenius’ law, opens the way for an alternative experimental procedure.
Rather than carrying out frequency-dependent measurements at one temper-
ature, loss curves may also be registered by temperature-dependent measure-
ments at conmstant frequency. Figure 6.9 presenis such measurements, and as
can be seen, they provide equivalent information. The relationship between
the relaxation rate and the temperature follows equally from both measure-
ments by a registration of the loss maxima.

In the combination of frequency-dependent and temperature-dependent
measurements, one can even go one step further, thereby establishing an im-
portant general procedure. For groups of relaxation processes that encompass
a broader time range, it often happens that the experimentally limited fre-
quency range of the experimental device is not large enough to include the
curves completely. Measurements carried out at a sequence of different tem-
peratures can provide the missing information. As indicated by our example,
different parts of the loss curve are placed into the accessible frequency win-
dow on changing the temperature. This property can now be used to set up
the complete loss curve by a synthesis. ‘The sections obtained at the different
temperatures can be coupled together by carrying out appropriate shifts along
the log w-axis, thus ending up in one continuous curve.

What is applied here is known in the literature as the time—temperature
superposition principle. The result of the synthesis is called a master
curve. For a thermally activated Debye process, the basis of the principle is
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Fig. 6.9. Temperature dependent measurements of the loss. tangent of the vy-process
of PCHMA for several fixed frequencies w/2r (after Heijboer [68])
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easily seen. According to Eq. (6.65), the dynamic compliance and the dynan
modulus are here functions of the product wr, or equivalently, of log(wr).
we also use Eq. {6.93), we may then represent the compliance as a function
a sum of terms

A .
Jlogwry=J (logw +logm + T log e) " (6.

The expression tells us that there are two ways of achieving a change in
namely either by a shift in logw, or by a shift in 7. The effects of frequen
and temperature thus appear as superposed, and Eq. (6.94} informs us abc
the correspondences.

As a prerequisite for the construction of a master curve, the shape of
loss curve must remain constant under temperature variations. For the syst
under discussion, this is obviously fulfilled. Measured curves coincide af
appropriate shifts along the logw-axis, as is shown in Fig. 6.10 for the r
and imaginary part of the dynamic shear modulus. The example represe:
an ideal case, and here there is also no need for a synthesis of the cur
from paris. In many other cases, however, construction of the master cw
is the only means of exploring a group of relaxation processes in total. Ex
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Fig. 6.10. Real and imaginary part of the dynamic shear modulus in the ra

- of the y-process of PCHMA, synthesized as a master curve using measurements

various temperatures., Curves represent the viscoelastic behavior at —80°C. ©
dashed curve indicates a perfect Debye process. Data from Heijboer [69]



250 6 Mechanical and Dielectric Response

if one is not sure whether eurve shapes are really temperature-independent,
construction of a master curve remains useful as it can always provide a rough
overall view, which is good for qualitative purposes.

Figure 6.10 shows also a comparison with the Debye process. We notice
that the y-process of the cyclohexyl groups does not agree with a single-
time relaxation process, but exhibits some broadening. This may be cansed
by a coupling between adjacent sidegroups, as a conformational change in
one sidegroup may well affect the neighbors. More specifically, the jump rate
may depend on the conformations of the neighbors, which then would lead
to a distribution of relaxation times, as is indicated by the broadened loss
spectrum.

6.3.2 Glass—Rubber Transition and Melt Flow

Figure 6.11 presents creep curves, registered for a sample of polystyrene mm-
der shear stress at various temperatures between —268°C and 296.5°C. We
observe a creep compliance that encompasses the enormously broad range of
nine orders of magnitude. At the lowest temperatures, the mechanical prop-
erties are those of a glass. At the other limit, the high temperature end,
the behavior is dominated by viscous flow as indicated by the characteris-
tic linear increase of J with time. The transition from the solid-like to the
liquid-like behavior occurs continuously, and importantly, cbviously in a sys-
tematic manner. Indeed, the way curves change with temperature indicates
that again time-temperature superposition is obeyed. Temperature variations
result in shifts of the creep compliance along the log t-axis, apparently without
essential modifications in shape. The consequence is the same as for the just
discussed local processes: On varying the temperature, different parts of J()
show up in the time-window of the experiment, and they can be reassembled
to form a master curve. Applying this procedure yields the overall Creep curve
and it evidently has a shape as indicated schematically in Fig. 6.12. We can
estimate the encompassed total time range by roughly summing up the time
ranges of the sections included and find an enormous extension of about 20
orders of magnitude.

J(t) has a characteristic shape composed of several parts. Subsequent to
the glassy range with a solid-like compliance in the order of 10~9 N—! m?,
an additional anelastic deformation emerges and eventually leads to a shear
compliance in the order of 107* N~ m?. The latter value is typical for a rub-
ber. For a certain time a plateau is maintained but then there finally follows
a steady linear increase of J, as is indicative for viscous fiow. The displayed
creep curve of polystyrene is not a peculiar one and may be regarded as rep-
resentative for all amorphous, i.e., noncrystalline polymers. One always finds
these four parts in

e a glassy region;
¢ the glass-rubber transition, often also called the ‘a-process’,

6.3 Specific Relaxation Processes and Flow Behavior 251

10!
10° 206°C 230

) &

% S e 180
107

. S S
Yy 7%
103 . ) g :/',/ . .//:// yd / ' /n

o L o '
g 107 vl /
i < ~ — -
= o d —
= g ;,/9’1?-0)_,110
- T 0
T T -9
108 // Ve Ve
g e d Va
// /,/ /,/
-7 o ~
10 ~ a
s a0
. - /./ //
10" o
- . P
10° e T .
=40 0
10710 I ! ]

0* 1% 108 107

Fig, 6.11. Creep compliance of PS (Af,, = 3.85 x10° gmol™!), as measured at the
indicated temperatures, Data from Schwarzl {70]

* a rubber-elastic plateau; and
* the terminal flow range.

Thesc are-the basic ingredients determining the mechanical properties of amor-
phous polymers and we now discuss them in a briel overview.

A first important conclusion can be drawn immediately; it concerns the
nature of the main part, the glass—rubber transition. As we find a systematic
shift of the time range of the transition with temperature, it is obvious that we
are dealing he}?e with a purely kinetical phenomenon rather than with a struc-
tural transition like the melting process or a solid-solid phase change. Curves
demonstrate that wheth;e;’y’a sample reacts like a glass or a rubber is just
a question of time. Température enters only indirectly, in that it determines
the characteristic time that separates glassy from rubbery behavior,

~
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Fig. 6.12. General shape of the complete creep curve of PS, as suggested by the
appearance of the different parts shown in Fig. 6.11

In Chap. 9, we will discuss the properties of rubbers. These are net-
works, composed of chemically cross-linked macromolecules. Owing to the
weak restoring forces, application of stress here induces a deformation that
is very large compared to solids. The observation of a plateau in the creep
compliance at a height comparable to the compliance of rubbers indicates
that a polymer melt actually resembles a temporary network. This behavior
expresses a major property specific for polymeric liquids: These include chain
entanglements, i.e., constraints for the motion arising from the chain connec-
tivity, which act like cross-links. Different from true cross-links of chemical
nature, entanglements are only effective for a limited time during which they
are able to suppress flow. This time becomes apparent in the Creep Ccurve as
the end of the plateau region. .

Subsequent to the plateau, flow sets in. As is intuitively clear, the time
needed for the chain disentengling increases with the molar mass and this
shows up in a corresponding broadening of the plateau. Results of dynamic-
mechanical experiments on polystyrene, presented later in Fig. 6.16, exemplify
the behavior. The data also indicate a lower limit: When decreasing the molar
mass one reaches a point, where the plateau vanishes. Then the glags—rubber
transition and the terminal flow region merge together. Absence of the platean
means the absence of an entanglement network. The observation tells us that
entanglement effects only exist above a certain minimum molar mass. For each
polymer one finds for that a characteristic value, known as the molar mass
at the entanglement lmit.

The measurements at high temperatures in Fig. 6.11 indicate a viscous
flow with & constant creep rate, determined by a viscosity ng
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1 ‘Chap. 9, we will discuss the properties of rubbers, These are net-
3, composed of chemically cross-linked macromolectles. Owing to the
restoring forces, application of stress here induces a deformation that
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Fig. 6.13. Molecular weight dependence of the viscosity as observed for the indi-
cated polymers. For better comparison curves are suitably shifted in horizontal and
vertical directions. Data from Berry and Fox [71]

As the flow velocity relates to the disentangling time, this also holds for the
melt viscosity. Indeed, g and the disentangling time for entangled melts show
the game dependence on the molar mass. Figure 6.13 collects the results of
viscosity measurements for various polymers. As should be noted, a power law
behavior o

10 o< M¥ (6.96)

is generally observed. One finds two regions, with different values of the expo-
nent v and a cross-over at a critical molar mass M. For molar masses below
M. one has » = 1; above M, one observes v == 3.2—3.6. If viscosity measure-
ments are further extended, up to the range of uttra-high molar masses, one
finally observes an exponent » = 3. Figure 6.14 presents such measurements
for 1,4-polyisoprene (PI)}, for molar masses up to My = 3 x 105 gmol 1. _
Timportantly, as is also shown by Fig. 6.16, the two parts of the mechanical
response separated by the rubber—elastic plateau differ in their molar mass
dependence. In contrast to the terminal flow region, the glass—rubber transi-
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Fig. 6.14. Molar mass dependence of the zero shear rate viscosity of Pl. The lower
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tion remains largely unaffected by the molar mass. The findings teach us that
chain equilibration in reaction to an applied field takes place as a two-step
process with a finite delay time in between. In the first siep, equilibration by
relaxatory modes only includes chain sequences up to a certain length, which
is determined by the distance between the entanglements. As this distance is
independent of M, this kolds likewise for the characteristic time of this first
step. Further relaxation is postponed until a chain extricates itself from the
tube formed by the other surrounding molecules and this process is of course
strongly affected by the molar mass.

As explained in the first part of this chapter, the viscoelastic properties
of polymers may also be studied by stress relaxation experiments or dynamic
mechanical measurements. Since all response functions are interrelated, the
mentioned ingredients of the mechanical behavior of amorphous polymers
show up in the other experiments as well. To give an example, Fig. 6.15
displays the time-dependent tensile modulus registered for polyisobutylene
(PIB). Measurements were again conducted for a serigs of temperatures, As
expected, data show the glass—rubber transition (for temperatures in the range
190-220 K}, followed by a plateau (around 230 K) and finally the onset of flow.
The right-hand side presents the composite master curve, set up by shifting
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Fig. 6.156. Time-dependent tensile modulus of PIB. Measurements at the indi-
cated temperatures (left) and master curve, constructed for a reference temperature
T = 298 K {right). The insert displays the apphied shifts. Data from Castiff and
Tobolsky [73]

the partial curves as indicated by the arrows. The shifts along the log t-axis,
which have to be carried out when going from the master curve to the mea-
sured parts, are displayed in the insert. In the construction of the master curve
the time-dependent modulus obtained at 208 K was kept fixed, while all other
curves were displaced. The shift factor, denoted log ar, is zero at this refer-
ence temperature. The result represents the complete time-dependent shear
modulus at the reference temperature. Comparable to the creep compliance
in Fig. 6.12, this tensile modutus again encompasses a huge range of about 20
ordersiof:magnitude in time,

Régarding the large number of conformational changes that must take
place if .a rubber is to be extended, the glass-rubber transition cannot equal
a single-time relaxation process and this is shown by the curve shapes. To
describe ‘F(t), empirical equations that often provide good data fits exist.
A first ong is concerned with the beginning of the transition range. It is known
as the K-(J)hlrausch—Wiﬂiamstatts (KWW) function and has the form
of a sfretched exgoﬁi;xéntial function

E(t) oc exp — G)ﬁ . (6.97)
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Fig. 6.16. Storage shear moduli measured for a series of fractions of PS with differ-
ent molar masses in the range M = 8.9 x10° to 5.81 x10% g mol . The dashed line in
the upper right corner indicates the slope corresponding to the power law Eq. (8.82)
derived for the Rouse model of the glass transition. Data from Onogi et al. [74]

The KWW function employs two parameters: 7 sets the time scale and S
determines the extension in time of the decay process. For values 8 < 1
a broadening results, as is always observed for the glass rubber transition.
Typical values are in the order § ~ 0.5. The KWW function holds only at
the beginning, i.e., in the short-time range of the glass—rubber transition.
Subsequently, there often follows a power law

E(#) ot . (6.98)

Fxperimentally it is indicated by a linear range in the center, when using
a log-log plot. Typical values of the exponent are v ~ 0.5.

Figure 6.16 presents, as a third example, results of dynamic-mechanical
measurements. They were obtained for a series of monodisperse polystyrenes,
ie., fractions with sharp molar masses. The curves depict the frequency de-
pendence of the storage shear modulus, G'(w). As we note, the order of ap-
pearance of the viscous flow and the a-process is reversed when compared to
the time-dependent measurements. The How-dominated long-time behavior
emerges first at low frequencies, whereas an investigation of the rubber—glass
transition vequires measurements at the high frequency end. The platean ap-
pears in between. Its width varies systematically with the molar mass, as has
already been mentioned and discussed. There is no plateau at all for the sam-
ple with the lowest molar mass (M = 8.9 x 10% gmol™'), but after its first
appearance, it widens progressively with further increasing molar masses.
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Low Frequency Properties of Polymer Melts

Also of interest in Fig. 6.16 is the finding that the shapes of curves in th
terminal region remain similar to each other for all molar masses. More specif
ically, within the limit of low frequencies, a constant slope emerges, indicatin,
a power law G'(w) « w?. It is possible to explain this asymptotic behavio
and to relate it to the properties of flowing polymer melis.

For a Newtonian low molar mass liquid, knowledge of the viscosity is full
sufficient for the calculation of flow patterns. Is this also true for polymeri
liquids? The answer is no under all possible circumstances. Simple situation
are encountered, for example, in dynamical tests within the limit of low fre
quencies or for slow steady state shears and even in these cases, one has ¢
include one more material parameter in the description. This is the recover
able shear compliance, usually denoted by J? and it specifies the amoun
of recoil observed in a creep recovery experiment when the load is removec
J? relates to the elastic and anelastic parts in the deformation and has to b
accounted for in all calculations. Experiments show that, at first, for M < M,
J? increases linearly with the molar mass and then reaches a constant valu
that essentially agrees with the plateau value of the shear compliance.

At higher strain rates more complications arise. There the viscosity is n
longer constant and shows a decrease with increasing rate, which is com
monly addressed as shear-thinning. We will discuss this effect and relate
phenomena in Chap. 9 when dealing with non-linear behavior. In this sectior
the focus is on the limiting properties at low shear rates, as expressed by th
zero shear rate viscosity, 79, and the recoverable shear compliance at zer
shear rate, J2.

Our concern is to find out how the characteristic material parameters 7
and JY are included in the various response functions. To begin with, conside
a perfectly viscous system in a dynamic-mechanical experiment. Here th
dynamic shear compliance is given by

1
J=1—. (6.9¢
Thow
This is seen when introducing the time dependencies
Oaz = 0oy exp{—iwt)

Com = ‘Jargm exp(—iwt)

into the basic equation for Newtonian liquids

) de..
. 5 Ozz = 10 dt

which results:';:

: (6.10(

09, exp(—iwt) = —niwJod, exp(—iwt) . (6.101
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In a polymer melt, the viscous properties of Newtonian liguids combine with
elastic forces. The latter contribute a real part to the dynamic shear compli-
ance, to be identified with JO:

J{w—0)=J2. (6.102)

Combining Eqs. (6.99) and (6.102) gives the dynamic shear compliance of
polymeric fluids in the limit of low frequencies

1
J@ﬁm:ﬁ+§@. (6.103)

*

As we can see, 79 and J? show up directly and separately, in the limiting
behavior of J/ and JV.

The dynamic shear modulus follows as

_ 1 _ Tl
Glw—0) = Jw-—0)  nwdd+i

2,2 70 s
_ Thw Je — o

= — 6.104
P 41 (6109
giving
G'(w — 0) = S22 (6.105)
in agreement with Fig. 6.16, and
G"w — 0) = nyw . (6.106)

We thus find characteristic power laws also for the storage and the loss mod-
ulus that again include J9 and g in a well-defined way.

One may wonder if 5y and J? can also be deduced from the time-dependent
response functions, as for example, from G(t). Indeed, direct relationships
exist, expressed by the two equations

o = / G(t)dt (6.107)
8]
and -
Jong = f G(tytdt . (6.108)
0

"The first relation follows immediately from Boltzmann’s superposition princi-

ple in the form of Eq. (6.38) when applied to the case of a deformation with ,.

constant shear rate &,,. We have

(A=) de g = &40t

(6.1094

4
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and thus
i co
(WP=) Opp = éan Gt —)dt = é,, G(t"yde” . (6.11
= oo =0
Since per definition
Tzp — n[)éz.'x: 3
we find
no = f Gty dt .
t=0
E To derive the second equation, we consider a dynamic-mechanical experit_nf—:
E and treat it again on the basis of Boltzmann’s superposition principle, writi
4 *
b g = Gt —t")eém () dt . (6.11
' i o ¥'=—co
Introducing :
ez (t) = €, exp(—iwt) _ (6.11
4 1 and
E O2x{t) = G(w)eze(t) (6.11
; 3 we obtain
1 oo
G(w) = - / Gt )iw exp(iwt”) de” , (6.11
=0

setting £” = ¢ —¢'. In the limit w — 0 we use the series expansion

Glw — 0) = Gt —iw + " +..)dt", (6.11
t=0
Igiving -
G'(w— 0) =w? / G(t)tdt . (6.11
<3 i=0

Aeomparison with Eq. (6.105) yields Eq. (6.108).

Combination of Eqs. (6.107) and (6.108) can be used for estimating t,
verage time of stress decay subsequent to a sudden shear deformation
We introduce this time, denoted by 7, as
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[ GEytdt
F== (6.117)
[ Gt)at
=0
and then obtain simply
7F=J . (6.118)

Equation (6.118) for the mean viscoelastic relaxation time may be applied
for both non-entangled and entangled melts and yields different results for

the two cases. For non-entangled melts, ie., M < M, we have JY oc M and
70 o M, hence

oo M? . (6.119)

F(gr molar masses above the entanglement limit, ie., M > M., one finds
J; = const and g oc MY with v = 3—3.6, therefore,

Toomg o MY with v =3-3.6. (6.120)

Vogel-Fulcher Law and the WLF Equation

We turn now to another point and consider the temperature dependence.
Recall that the data indicate the validity of time-temperature or frequency-
temperature superposition. This has an important implication: The findings
show that the processes comprising the terminal fow region and the glass—
rubber transition change with temperature in the same manner, Particularly
suited for the description of this common temperature dependence is the shift
parameter logap. We introduced it in connection with the construction of
the master curves, but it also has a well-defined physical meaning. This be-
comes revealed when we look at the equations valid in the terminal range
Egs. (6.105) and (6.106). It is to be noted that w and 7o enter into the expres—,
sions for the dynamic modulus and the dynamic compliance not separatcly,
but only as a product. As temperature only affects n9, we conclude that ap
and no must be proportional quantities. The exact relationship follows when
taking into account that shift parameters always relate to a certain reference
temperature. Let this reference temperature be 7}, Then ary is given hy

(T (6.121)

With the aid of ar we can express response functions at any temperature in
terms of the respective response function at Ty. Explicitly, for the dynamical
shear modulus, the following relation holds:

G(T',w) = G(Tp, arw) , (6.122)
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or for a logarithmic frequency scale
G(T\ logw} = G{Ty, logw + log ar) - (6.123)

In correspondence to this, we write for the time-dependent shear modulus
t - - .
G(T,8) =G (Tg, —) ) . (6124
ar

or ’

G{T\logt) = G(Ip,logt —~ log ar} . (6.125

The uniform temperature dependence implies a joint rescaling of the re
laxation times of all modes in both the glass transition range and the termina
flow region, and one may wonder how this might arise. One should be awar
that these modes vary greatly in their spatial extensions, which begin with the
length of a Kuhn segment and go up to the size of the whole chain, and alsc

- vary in character, as they include intramolecular motions as well as diffusiv

movements of the whole chain, and nevertheless, all modes behave uniformly
There seems to be only one possible conclusion: The temperature dependence
must be a property of the individual segments. Since all modes are basec
on the motion of segments, their mobility affects each mode alike. There i
a notion that suitably exXpresses this property and this is the segmental fric
tional coefficient. We will introduce it in the next chapter, in the treatmen
of microscopic dynamics. For the moment, it is sufficient to say that frictiona
forces that act in identical manner on all the segments exist. They uniforml:
conirol the kinetics of all the relaxatory modes of the chains. The commor
temperature dependence of all relaxatory modes in the a-transition range anc
the terminal zone, and thus of the viscosity, just reflects that of the segments
frictional force.

Equation (6.121) relates az to the temperature dependence of the viscosity
Numerous experimenis were carried out to measure this function. They led t
a specific result. As it turns out, for the majority of polymer systems, #7o(7") i
well-represented by an empirical equation known as the Vogel-Fulcher law
It has the form

Ta

o no{T") = Bexp Ty (6.126
In1 addition to the prefactor B two parameters are included, namely the acti
vation temperature T and the Vogel temperature 7. The introductio:
of the latter makes up the difference to Arrhenius’ law.

The function 79(7T), as formulated by the Vogel-Fulcher law, include
a sipgularity at T = Ty. However, whether the viscosity really diverges .
T dpproaches Ty cannot be checked by any experiment. Measurements ¢
viscosities alwayg‘ic‘b"me to an end about 50 K above 1%, because 1y is then a
ready very latgd, reaching values in the order of 10*® poise. Notwithstandin
the fact that the point of divergence is out of reach, validity of the Vogel
Fulcher equation is well-established since effects of a finite Vogel temperatur

S
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et al.

are clearly observable also in the range of accessible temperatures. There, the
function 7(T") exhibits a characteristic curvature that distinguishes it f,‘rom
Arrhenius behavior. Figure 6.17 depicts, as an example, results obtained for
polyisobutylene (PIB). An increase to high values of Mo is observed at low
temperatures and it can be described by a Vogel-Fulcher function, as given
by the continuous line. The figure also includes the temperature dependence
of the characteristic time 7, of the glass—rubber transition. It is given by

Ty
Ta = T EXP T-Ty (5_127}

with the same values for Ty and Ty as in Eq. (6.126).
Having an equation for the temperature dependence of the viscosity, we
may also formulate the shift factor log ap. Equations (6.126) and (6.121) yield

1 1
log ar = logeT: ( -
s TTT, TO—TV)
T T
= loge(~Th) :
(T[] —Tv)(T—Tv)
=lope (—Ta) -1

LTy T T T (T =T (6.128)

{
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This is usually expressed as

T Ty
logap = —Cym——0 6.129
og ar o A {6.129)
introducing two parameters, Ci and Cy, defined as
Ta
01 = log e———— and Oz = Tg - Tv . (6.130)
To—1v

Equation (6.129) was postulated by Williams, Landel and Ferry and is well-
known in the literature under the abbreviated name WLF equation.

When master curves are constructed one chooses in most cases the glass
transition temperature T as reference temperature. 1 is obtained by a stan-
dard calorimetric or volumetric measurement, as explained in Sect. 6.3.3. It
is found. that, for this choice of Tg, the parameters C; and Cy of the WFL
equation have values which are bound to certain ranges, namely

Cy = 14—18,
Cy = (30—70) K .

The values of C indicate that T is located (30—70) K below Ty,.

The Dielectric a-Process and the Normal Mode

The two groups of relaxatory modes that in mechanical relaxation experiments
lead to the a-transition and the final viscous flow also emerge in the dielectric
respouse.

Figure.6.18 presents, as a first example, the frequency dependencies of the
real and imaginary part of the dielectric constant, obtained for poly(vinylace-
tate) (PVA) at the indicated temperatures. One observes a strong relaxation
process.

Figure 6.19 displays the temperature dependence of the relaxation rate, as
derived from the maxima of the loss curves. For a comparison it also includes
the temperature dependencies of the loss maxima of the mechanical c-process,
as observed in measurements of either J”(w) or G"(w). As we can see, the
diglectric relaxation rates are located intermediately between the rates ob-
tained in the mechanical experiments and, importantly, all three temperature
dependencies are similar, the rates differing only by constant factors. The as-
signment of this dielectric relaxation process is therefore obvious: It originates
from "ghe. same group of processes as the mechanical a-process and thus is to
be addressed as the dielectric a-process.

There aré other polymers that in addition show the chain disentangling
associated with:s-"u]_.néeﬂow transition. An example is given by cis-polyisoprene
(PIP). Figure 6.20 depicts the dielectric loss £” in a three-dimensional repre-
sentation of the functional dependence on frequency and temperature. Two

e
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Fig. 6.18. Dielectric a-process in PVA. Data from Ishida et al. [76] and

relaxation processes show up. The one with the higher frequency again repre- ’ v=2 for M<
sents the a-process, the other is called the normal mode, for reasons to be ;
seen below.

To learn more ahout the two processes, it is instructive to check for the mo-
lar mass dependencies. In fact, one here finds a characteristic difference. The
results of studies on a set of samples with different molar mass are displayed in
Fig. 6.21, We observe that the a-process is molar mass independent, whereas
the normal mode shows pronounced changes. Figure 6.22 depicts these changes
in a plot of the relaxation time 7 of the normal mode in dependence on the
molar mass. Data demonstrate the validity of a power law,
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line) observed in mechanical experiments. Collection of data published in [77]

with two different values for the exponent,

v=37 for M >10*gmol!
and

v=2 for M <10%gmol™!.

The cross-over from one to the other regime shows up as a sharp bend in the
curve.

We have already met such a molar mass dependence in Eqgs. (6.119) and
(6.120), when formulating the average viscoelastic relaxation time 7 of poly-
mer melts. Roughly speaking, ¥ gives the time required by a chain for a com-
plete conformational recrganization. This also implies a full reorientation of
the end-to-end distance vector of the chain. This is exactly this motion that
shows up in the dielectric normal mode.

The question arises as to why cis-polyisoprene, different from poly(vinyl-
acetate), shows the chain reorientation in its dielectric spectrum. The reason
becomes clear when we look at the chemical constitution of polyisoprene, and
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6.12. General shape of the complete creep curve of PS, as suggested by the
wance of the different parts shown in Fig. 6.11

1 ‘Chap. 9, we will discuss the properties of rubbers, These are net-
3, composed of chemically cross-linked macromolectles. Owing to the
restoring forces, application of stress here induces a deformation that
'y large compared to solids. The observation of a plateau in the creep
liance at a height comparable to the compliance of rubbers indicates
a polymer melt actually resembles a temporary network, This behavior
'S8es & major property specific for polymeric liquids: These include chain
iglements, i.e., constraints for the motion arising from the chain connec-
, which act like cross-links. Different from true cross-links of chemical
e, entanglements are only effective for a limited time during which they
ble to suppress fow. This time becomes apparent in the creep curve as
1d of the platean region. .

ibsequent to the plateau, flow sets in. As is intuitively clear, the time
d for the chain disentangling increases with the molar mass and this
s up in a corresponding broadening of the plateau. Results of dynamic-
anical experiments on polystyrene, presented later in Fig. 6.16, exemplify
shavior. The data also indicate a lower limit: When decreasing the molar
one reaches a point, where the plateau vanishes. Then the glass—rubber
tion and the terminal flow region merge together. Absence of the platean
3 the absence of an entanglement network. The observation tefls us that
glement effects only exist above a certain mintmum molar mass. For each
ter one finds for that a characteristic value, known as the molar mass
e entanglement limit.

1e measurements at high temperatures in Fig. 6.11 indicate a viscous
¢ith a constant creep rate, determined by a viscosity ng

a7 1

at S (6.95)

&
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Fig. 6.13. Molecular weight dependence of the viscosity as observed for the indi-
cated polymers. For better comparison curves are suitably shifted in horizontal and
vertical directions. Data from Berry and Fox [71]

As the flow velocity relates to the disentangling time, this also holds for the
melt viscosity. Indeed, g and the disentangling time for entangled melts show
the game dependence on the molar mass. Figure 6.13 collects the results of
viscosity measurements for various polymers. As should be noted, a power law
behavior o

10 o< M¥ (6.96)

is generally observed. One finds two regions, with different values of the expo-
nent v and a cross-over at a critical molar mass M. For molar masses below
M. one has » = 1; above M, one observes v == 3.2—3.6. If viscosity measure-
ments are further extended, up to the range of uttra-high molar masses, one
finally observes an exponent » = 3. Figure 6.14 presents such measurements
for 1,4-polyisoprene (PI)}, for molar masses up to My = 3 x 105 gmol 1. _
Timportantly, as is also shown by Fig. 6.16, the two parts of the mechanical
response separated by the rubber—elastic plateau differ in their molar mass
dependence. In contrast to the terminal flow region, the glass—rubber transi-
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¥ig. 6.20. ¥Frequency dependence and temperatwre dependence of the dielectric
loss in cis-PIP (M = 1.2 x 10* gmol ™), indicating the activity of two groups of
relaxatory modes. Spectra obtained by Boese and Kremer (78]

focus in particular on the associated dipole moments. Figure 6.23 displays
the chemical structure. The main point is that isoprene monomers are po-
lar units that possess a longitudinal component pj| of the dipole moment,
which always points in the same dirvection along the chain. As a consequence,
the longitudinal components of the dipoles of all monomers become added
up along the contour, giving a sum proportional to the end-to-end distance
vector R. In the dielectric spectrum the kinetics of this total dipole of the
chain is observable, hence also the chain reorientation as described by the
time dependence R(%).

The peculiar name ‘normal mode’ needs a comment. As will be explained
in detail in the next chapter, chain dynamics in melts may be described with
the aid of two theoretical models known as the Rouse model and the reptation
model. In the framework of these treatments chain kinetics is represented as
a superposition of statistically independent relaxatory normal modes. As
it turns out, the dielectric normal mode is associated with the mode with
the longest relaxation time. For nop-entangled melts this is the lowest order
Rouse mode; for entangled melts, it'is the lowest order reptation mode.

4

T

6.3 Specific Relaxation Processes and Flow Behavior 867

10‘10

10° +

Q-processes

107
108
10°

10*

of2r [s1]

10°
107
10!

10°

o
| M=9'7-103 ’; 38-"[03

107

25 3.0 35 4.0 4.5 50
1T 103K
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mass (four values are indicated}. The solid lines are fits based on the WLF equation.
Data from Boese and Kremer {78]

In addition to the longitudinal component of the dipole per monormer, there
is also a transverse part. As the reorientation of the transverse component
requires only local changes in the conformation, it can take place much more
rapidly than the spatially extended normal mode. Hence, a qualitative change
in the kinetics occurs and indeed, it is this movement that shows up in the
a-process. Both the a-process and the normal mode obey the Vogel-Fulcher
law, in full analogy to the common behavior of the a-process and the terminal
relaxation in mechanics. -

It is. possible to write down approximate expressions for the relaxation
strengths Ag of the two processes. As a chain may be described as a sequence
of freely jointed segments, we can just make use of Eqs. (6.16) and (6.59),
and introduce for the a-process and the normal mode the transverse and the
longitudinal component of the dipole moment, respectively. The relaxation
strength of the a-process then follows as

g 2
epiegy cs%l_%—) . (6.131)
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Fig. 6,23. Stereochemical constitution of a monomer unit of cis-PIP. The electric
dipole moment, split into a longitudinal and a transverse component, is indicated

Here, p%_is the transverse dipole moment per segment, and ¢, gives the number -

density of segments. The brackets indicate an averaging over all rotational
isomeric states of one segment. The relaxation strength of the normal mode
follows equivalently, by introduction of the mean longitudinal dipole moment
per segment

(@)%

colNEnm ™ Cs ST - (6.132)
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Neither the c-process nor the normal mode equal a single-time relaxation
process. A good representation of data is often achieved by the use of the
empirical Havriliak-Negami equation, which has the form

Ag

TR (1 + (—lwr)Pr )J62

(6.133)

This function is a formal generalization of the single-time relaxatlon func-
tion, achieved by an inclusion of two additional parameters, #1 and (s {for
B2 = 1 it equals the Cole-Cole function mentioned earlier). These determine
the asymptotic behavior, f; on the low frequency side, since

dloge”

b= for wr < 1, (6.134)

dlogw
and the product 518 on the high frequency side, since

dloge”

Bifa=— dlog

forwr» 1. (6.135)

Obviously Bz determines the curve asymmetry. It is needed for the data repre-
sentation because the observed curves £” (w) generally exhibit a larger broad-
ening on the high frequency side. Typical values are 1 =~ 0.5, By ~ 0.7 for
the a-process and £, ~ 1, fz = 0.4 for the normal mode.

Equations {6.131) and (6.133) together provide a description of the di-
glectric o-transition, with the assumption that dipoles of different segments
reorient independently. In fact, this is only true at larger distances from the
glass transition temperature. On approaching 7, deviations show up. Fig-
ure - 6.24 shows the temperature dependence of the relaxation strength of
poly(vinylacetate) and one observes a pronounced increase. The behavior in-
dicates increasing correlations between the motions of the transverse dipoles,
not only along one chain, but possibly also between adjacent segments on
different chains.

6.3.3 The Glass Transition Temperature

The mechanical experiments clearly demonstrate that the transition from the
glassyhto thé liquid state is a purely kinetical phenomenon. Whether the com-
pliance of a sample is small as in a glass, or large as for a rubber, depends only
on the measuring time or the applied frequency. The reasons were discussed
above. Rubber elasticity originates from the activity of the a-modes, a ma-
jor group, of, relaxation processes in polymer fluids. The establishment of the
deformation Subsequent to the application of a load requires a certain time,
giver. by the time scale of the a-modes. If the load varies too rapidly, the de-
formation cannot ft?llpw and the sample reacts like a glass. We also discussed
the effect of temperature and found, as a main property of the a-modes, that
relaxation times change according to the Vogel-Fulcher law. The progressive

e
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Fig. 6.24. Temperature dependence of the relaxation strength Ae, of the dielectric
o-process in PVA. Data from Ishida et al. [76]

increase of the relaxation times on cooling implied by thig law finally leads to
a freezing of the a-modes within a comparatively small temperature range. If
they are frozen, we have a glass.

We thus find glass-like rveactions for both sufficiently high frequencies
and sufliciently low temperatures; but are the two situations really compa-
rable? The answer is, yes and no, depending on the point of view. Yes, be-
cause both situations have in common that the a-modes cannot equilibrate.
No, if we consider the thermodynamic state of order. In the first case, we
are dealing with a system in thermal equilibrium and study its reaction on
perturbations; in the second situation, however, the system has become non-
ergodic, i.e., thermal equilibrium is only partially established. A major part
of the internal degrees of freedom, as represented by the c-modes, cannot
equilibrate. The temperature, where the transition from a liquid equilibrium
state to a non-ergodic one, i.e., only partially equilibrated state takes place, is
called the glass transition temperature, with the general designation Tg.

How can 7, be determined? In principle this can be achieved in various
ways. However, two of the methods are of special importance and are used
in the majority of cases. These are temperature-dependent measurements of
the expansion coeflicient or the heat capacity of a sample, carried out dur-
ing heating or cooling runs. They need only small amounts of material, and
standard equipment i3 commercially available.

Figures 6.25 and 6.26 present as examples the resulis of a volumetric and
a calorimetric measurement on poly(vinylacetate). The glass transition has
a characteristic signature that shows up in the curves. As we can see, the
transition is associated with steps in the expansion coefficient dp™*/dT" and
the heat capacity d?{/dT, i.e., changes in the slope of the functions p~1(T')
and ‘H(T). The transition extends over a finite temperature range with typical
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Fig.. 6.25,. Temperature dependence of the specific volume of PVA
heating. Dilatometric results obtained after a quench to — :
100 h of storage. Data from Kovacs [79]
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on the heating rate 7',
the rate.

In vif&w of the broadening of the step and the rate effects, it does not seem
appropriate to introduce a sharply defined 1. For practicail use as material
p?,rameter and for comparisons it is sufficient to conduct the measurement
with a standard heating or cooling rate (7] = (10 — 1)K s71) and to izlj
01‘11; solne temperature near the center of the step, for example, that associapited
:nth l:?e maximum s‘lope. The thus obtained values of T ha,\’re a tolerance of
p(})lr:jo nigif i?f, but this-must be accepted regarding the physical nature of the
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Pansion coefficient is easily seen. Cooling
ing of the cw-modes. The observations
only the g]ga.pfe of a, sample, but also its volume and its enthalpy. This is not
ak fjmll Sufpriging. If Segme';_;if‘;s‘ move, they produce an additiona.l volume i
their neighborhoods. n the literature, this is often called a free volume in
order to stress that it is not occupied by the hard cores of the monomerlsn
The free VOl:llIEIle increages with temperature because motions intensify, thai;

grees. The calorimetric experiment also exhibits an-
€. Qne can see that the location of the step depends
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Fig. 6.26. Heat capacity of PVA, as measured in a differential calorimeter during
heating (with two different heating rates)} and cooling

is to say, the jump rates increase and, more importantly, a growing num-
ber of conformational states becomes populated and not all of them allow
a dense chain packing. Therefore, when on crossing 1 from low temperatures
the e-modes become active, beginning slowly and then steadily increasing in
intensity, a growing additional free volume correspondingly arises. Thermal
expansion in the glass is due to the anharmonicity of vibrational motions,
as in crystalline solids. As we can see, the a-modes contribute another, even
larger part to the expansion coefficient and it comes into effect at T,

That a corresponding behavior is found for the enthalpy and the heat
capacity is conceivable. As the free volume incorporates energy, changes in the
volume and in the enthalpy are interrelated and this results in simultaneous
steps in the expansion coefficient and the heat capacity.

Being in a non-equilibrium state, liquids below T have a tendency further
to change the structure in the direction towards the equilibrium. A slow de-
crease in volume and enthalpy is often observed. Figure 6.25 also exemplifies
this behavior. Prolonged storage of the sample of poly(vinylacetate) below T
for 100h results in a shrinkage in volume. Note that, as a consequence, Ty,
as measured during the subsequent heating, is shifted to lower values. For-
mally, this may be associated with the shift of the point of intersection of the
two lines representing the glassy and liquid state. Physically, it is caused by

e maste e i
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