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Chapter 2

Polymer Crystallization – Literature review

2.1 Introduction

While it is not possible to cover the subject of polymer crystallization in a review

of this size, it is important in light of author’s research to review the fundamental features

that are essential to the study of polymer crystallization.  The topic itself is central to the

present research work, which deals in large part with the crystallization behavior of

semicrystalline polyimides.  This section thus attempts to cover the important topics in

polymer crystallization, the understanding of which is directly or indirectly connected to

the present research work.  It is also important to look at the fundamental Lauritzen-

Hoffman polymer crystallization theory, which was derived originally for flexible

polymers like polyethylene.  The topics covered in this review encompass several

concepts that make the essential foundation on which a significant part of the subsequent

research investigation rests.

The Lauritzen-Hoffman theory and its conclusions serve more to establish the

general framework for explaining several important observations regarding the

crystallization behavior of flexible polymers.  While the theory is not readily applicable

to more rigid chain polymers like PEEK and aromatic polyimides, it has been used many

times without sufficient justification for explaining the crystallization behavior of such

rigid chain systems1.  It can only be said that in future, this theory may serve as a good

starting point for better explaining the crystallization behavior of rigid chain systems like

polyimides.
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2.2 Thermodynamics of crystallization and melting

From thermodynamic considerations alone, a crystal is in a lower free energy state than

the liquid when the temperature is below the melting point (Te
∞) for a large crystal of a

very high molecular weight polymer.  Figure 2.1 shows schematically the changes in the

Gibbs free energy of liquid and a crystal with temperature.  The necessary (but not

sufficient) criterion for any spontaneous phase transformation (for a constant temperature

and constant pressure process) is a negative value of ∆G.  Hence the process of crystal

formation is spontaneous below the equilibrium melting point(Tm
∞)∗∗ while the reverse

process, i.e. crystal melting to form liquid is spontaneous above Tm
∞.  At Tm

∞, a condition

of equilibrium exists between the crystal and liquid as both phases have the same value of

G and ∆G= 0.

For the case of constant temperature process such as fusion at Tm
∞, ∆Gf = 0 and

∆G = ∆H - T∆S = 0 at T = Tm
∞ {2.1}

Thus:
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Thus both enthalpic and entropic effects will determine the equilibrium melting point for

any polymer crystal.  While a higher value of ∆Hf leads to a higher Tm
∞, the entropic

effects cannot be ignored and are often dominant in deciding the value of Tm
∞.  Table 2.12

lists the values of Tm , ∆Hf and ∆Sf for a series of polymers and illustrates the effect of

                                               
∗∗ While Te

∞ represents the melting point of an infinitely long crystal of an infinite molecular weight
polymer, Tm

∞ represents the melting point of an infinitely long crystal of finite molecular weight.  In the
case M→∞, Tm

∞→ Te
∞.
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Table 2.1 Values of Tm, ∆Hf and ∆Sf for various polymers2.

Polymer Tm (°C) ∆Hf (J/mol) ∆Sf (J/(K.mol))

Polyethylene 137.5 4,020 9.8

Poly(1,4-cis-isoprene) 28 4,390 14.5

Poly(decamethylene

     sebacate

Poly(decamethylene

     azetate)

80

69

50,200

41,840

142.3

121.3

Poly(decamethylene

sebacamide)

Poly(decamethylene

Azelamide)

216

214

34,700

36,800

71.1

75.3

Figure 2.1 General behavior of thermodynamic variables at the equilibrium

melting temperature Tm
∞ (a) gibbs free energy (b) entropy and

volume.
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varying ∆Hf and ∆Sf.  In this regard, it is especially important to visualize the importance

of the term ‘Sl’, the entropy of the liquid state.  As shown in the table, while the values of

∆Hf are lesser for the polyamides, the melting points are higher due to lower ∆Sf.  This

lower value of ∆Sf is in part due to lower value of entropy (Sl) for the amide in the liquid

state.  The value of Sl is lower due to presence of hydrogen bonding and increased chain

stiffness.  Similar effects of lower ‘Sl’ and hence lower ∆Sf could also be important for

the class of high melting semicrystalline polyimides, the topic of this proposal.  Although

comprehensive calculations of these fundamental thermodynamic parameters for

semicrystalline polyimides is still lacking in literature, it is widely known (as discussed in

Chapter 1) that strong intermolecular forces due to CTC formation exist in polyimides.

The inherent stiffness of the chain also contributes to a lower value of ‘Sl’.

Gibbs free energy change for a particular phase is expressed as

dG = V dP – S dT {2.3}

where V and S are the volume and entropy of the phase respectively.  Taking the partial

derivatives of ‘G’ with respect to P & T in the above equation, we obtain:

(∂G/∂T)p = -S & (∂G/∂P)T = V {2.4}

Figure 2.1(b) shows the idealized response of these variables as a function of temperature

and at the transition temperature Tm
∞.  These first derivatives of ‘G’ show a step change

at the transition temperature Tm
∞ and the transition is called a first-order transition.

While the above discussion addresses purely thermodynamic considerations, the kinetic

issues do not favor formation of an infinitely large crystal in polymers, which are

characterized, by the formation of finite sized crystals.  The exact nature and morphology

of these crystals however, has been one of the most heavily debated topics in polymer

science.

2.3 Crystallization in polymers: structure, models & relationships

The crystallization of polymers can be broadly classified under three groups:

(A) Crystallization during polymerization (B) Crystallization induced by orientation and

(C) Crystallization under quiescent condition.  While this discussion will only briefly
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address type (A) and (B), the last category (C), will be covered in greater detail as it is

more pertinent to the present discussion.

(A)  Crystallization during polymerization

A special attribute of this kind of polymerization is the formation of macroscopic

single polymer crystals3 (see Figure 2.2 (b)).  During such a process the monomers

forming a crystal can be joined up into chains by solid state polymerization, while the

original “monomer” crystals are preserved.  The final polymer crystal is obtained due to

chemical reactions at the gas/solid or liquid/solid interface and not just as a consequence

of change in physical state of the material as is observed in normal crystallization

processes4.  The final properties of crystals formed by such methods can be very

interesting, for e.g. poly (sulfur nitride) crystals formed by such methods conduct

electricity like metals along the crystal axis (corresponding to the chain direction) and

can even become superconducting at sufficiently low temperatures5.  The mechanism of

such a process can be (a) the simultaneous polymerization and crystallization and (b)

successive polymerization and crystallization5 (see Figure 2.2 (a)). In (a) the primary and

secondary bonds are set at the same time, and in (b) the polymerization and

crystallization sites can be separated and thus the nature of the polymer segments as yet

uncrystallized becomes important5.  While macromolecular crystallization can occur from

only the melt or solution state, the crystallization during polymerization can occur from

the monomer being in either gaseous or condensed state.  It is thus also possible to get

chain folded crystals below the glass transition temperature of the final polymer (e.g.

100°C below Tg for poly (p-xylylenes) 2).
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Figure 2.2 (a) Crystallization of macromolecules (i) polymerization followed by

crystallization [(i.e.) separate polymerization and crystallization] (ii)

crystallization during polymerization4 and (b) example of macroscopic

single crystal obtained by simultaneous polymerization and

crystallization-poly (sulfur nitride) 1 division = 0.5 mm (stejny et al.3)

(b)(a)

( i)

( ii)
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(B)  Crystallization induced by orientation

The schematic of orientation induced crystallization is illustrated in Figure 2.3.  The

process can be described as stretching of long chains to form fibrous crystals.  In fact this

is the underlying process governing the formation of fibers though any perfectly smooth

and completely elongated chain morphology as illustrated in the schematic is difficult to

attain under the most perfect of circumstances.  During stretching, the distortion of chains

from their most probable conformation results and hence a decrease in the conformational

entropy takes place.  If this deformation is maintained in this lower conformational

entropy state then less conformational entropy needs to be sacrificed by transforming to a

crystalline state.  This decrease in total entropy of fusion allows the crystallization to

occur at higher temperatures than will take place under quiescent conditions.  Natural

rubber and polyisobutylene are excellent examples of such an effect as they show great

propensity to crystallize under stretched conditions whereas they crystallize slowly under

quiescent conditions2. Also, crystallization in an already oriented polymer results in

reduction retractive force2 (with respect to oriented state).  This can be explained on the

basis of rubbery elasticity theory according to which the force exerted by fixed chain

ends is inversely proportional to number of statistical elements and the magnitude of end

to end distance.  The reduction in force results, due to lesser number of statistical units

available in the amorphous regions and also because the end to end distance of the

amorphous units is smaller than the end to end distance in the crystal.  Melting of such

elongated crystals lead to contraction and crystallization leads to elongation.  Thus

macroscopic dimensional changes and changes in retractive force can be related to the

crystal-liquid phase transformation2.

Normally, the formation of such fibrous morphology is accompanied by

formation of an epitaxial layer over6 and around the inner fiber giving rise to the so-

called ‘shish-kebab’ kind of morphology7.  It is well documented8,9,11 that the outside

‘kebab’ like regions are essentially folded chain regions comprised of chains which did

not crystallize during the orientation process.  Thus, while the inner ‘shish’ regions form

first, the formation of folded chain discs occurs due to nucleation events taking place on
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the extended chain surface.  It is interesting that though the nature of the nucleating

surface is a partially extended chain, and thus a great propensity to crystallize into the

thermodynamically more favorable extended chain form exists, subsequent crystallization

is still of the folded chain type.  This has been used as a strong argument in favor of

kinetic theories that argue for the chain folded model of crystallization10.  The lamellar

kebabs are usually spaced at distances of ca. 200 to 1000 Å along the chain extended

shish.  Some researchers have studied the rate of growth perpendicular to the stretch

direction and found it to be independent of the percentage extension11,12,13(though the rate

of extension was not a factor in these studies).  The unaligned chains, which give rise to

this undetachable plate like growth, can be the uncrystallized part of the main chain or

totally separate chains.  Some researchers found that the central shish was of higher

molecular weight than the kebabs, while some14 have demonstrated that a minimum chain

length was required for the chain extension process.  It has also been argued that the

growth of chain folded structures is aided in large part due to the dangling cilia which

mostly result along the central fiber like morphology.  These cilia, it has been proposed10,

then act as nucleation sites for the chain folded region to develop.
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Figure 2.3 Schematic representation of orientation induced crystallization.

The first three drawings illustrate the orientation and

crystallization of random coils while the last two drawings

show the growth of folded chain kebabs around the central

shish10.

Figure 2.4 (a) Shish kebab morphology of polyethylene from solution (from

Pennings, 19673. (b) Shish kebabs of cellulose formed by

recrystallizing cellulose II onto microfibrils of high molecular

weight3.
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(C) Crystallization under quiescent condition

Crystallization of long-chain flexible molecules of sufficient structural regularity

is widely observed under quiescent conditions for a large number of macromolecules of

both synthetic and natural origin.   While it has been long established that similar to low

molecular weight compounds, polymers can exhibit considerable long range order in the

crystalline regions, the exact nature and morphological form of these crystalline regions

(specifically at the molecular level) has been a matter of considerable debate.  In this

regard it is important to classify the quiescent polymer crystallization into two general

types, (1) Crystallization from dilute solutions and (2) Crystallization from the melt.

Crystallization from dilute solutions often provides a more fundamental avenue for

structural analysis of polymer crystals as these entities can be isolated and precisely

studied.  Crystallization from the melt is often closer to pragmatic use of the polymer of

interest though it adds an additional degree of difficulty to the fundamental structural

studies.   While this discussion will refer to results and attributes of dilute solution

crystallization intermittently, it is crystallization from the melt that is of direct relevance

to the present study.  The nucleation, growth and kinetics of development of these

crystalline regions are of both profound fundamental and practical interest. These

characteristics are however directly linked to understanding of the morphological detail

of these crystalline regions.  On this account, there have been various models proposed

over the past five decades- each involving considerable amount of controversy and

debate, much of that debate persisting even to date.  These models are elucidated below,

some of which will be elaborated in more detail in the ensuing discussion.  The type of

morphology can, however, be first classified into two broad classes10 (1) the fringed

micelle model and (2) lamellar type of morphology.  The models of lamellar morphology

themselves differ on the basis of the nature of the fold surface, type of reentry of the

chains and on accounts of presence of an intermediate region for the chain traveling from

the crystal to the amorphous phase.
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2.4 The fringed micelle model

Hermann, Gerngross and Abitz15 first conceived this model in 1930 to explain the

structure of gelatin, while the model was later more fully expanded by Flory16,17,18.  The

fringed micelle model is based on the idea that parts of the polymer segments (either in

solution or in the melt) align themselves together to form bundled crystalline regions

(Figure 2.5).  These bundles can then grow in the direction of chain axis by reeling in

adjoining chain segments (of the chains already part of the crystal) into the crystalline

region.  Lateral growth of these crystalline regions can also take place by accretion of

chain segments from other molecules.  The growth of these structures however is

(a) (b)

Figure 2.5 Fringed micelle model  (a) Model of crystallization as might be
visualized in a thermoreversible gel (Keller et al10.)  (b) Hermann
and Gerngross model15 for a semicrystalline polymer.  Similar
schematics illustrate the general molecular picture in fringed
micellar crystallization.
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impeded by the presence of entanglements and strained regions, which then constitute the

amorphous phase.  The “fringes” are the regions of the chains traveling from the

crystalline region to the surrounding amorphous regions.  The crystalline regions than

serve as physical crosslinks.

Some of the first blows to this model of crystallization occurred after collecting

evidence of large crystalline superstructures present in such materials, called

‘spherulites’.  Such a model could not readily explain the growth of such generally

spherically symmetrical structures19.  Also, the birefringence measurements on these

spherulites by light microscopy suggested that, for most systems, the polymer chains

were more or less tangential in this spherical structure.  Although several models were

put forward to explain the spherulitic behavior based on this concept20, they were

subsequently abandoned in favor of folded chain lamellar models.

While the fringed model has now long been believed to be inaccurate for

describing the common quiescent crystallization behavior, its modifications can still be

utilized to explain several phenomena occurring in the crystallization of polymers.

Several aspects involving the crystallization of thermoreversible gels - where the dilute

solution crystallization leads to ‘gelation’ of the overall system have been explained on

the basis of this model10,21,22.  Lamellar crystallization, it has been debated, would have

lead to the presence of individual single crystals or aggregates thereof.  This model has

also been widely proclaimed to be correct for certain polymers that crystallize during

rapid cooling/quenching from the melt, and where the individual spherulitic detail is not

discernible from microscopy10.  The use of such a model for describing crystallization of

an amorphous polymer just above the Tg has been advocated on the grounds of low

thermal energy available to chains at such temperatures19.  At temperatures significantly

higher than Tg, these structures will not be stable and will give way to lower energy

lamellar form.  Additionally the model is utilized to explain the behavior of highly

oriented samples like the drawn fibers.
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2.5 Lamellar models:

It is a well-established and proven fact that a lamellar crystal is the fundamental

structural form by which polymers most generally crystallize, a feature true for the vast

majority of semicrystalline polymers crystallized from the bulk (i.e. from solution or

from melt).  The first report giving evidence of lamellar structures was by Storcks23 in

1938.  He reported electron diffraction results on cast films of gutta-percha and

concluded that the films contained microscopic crystals with the molecular axis less than

4° from normal to the plane of the film.  He observed that while the electron diffraction

results gave only {hk0} reflections, the total length of the chains was much greater than

the thickness of the films- a recognition that led him to first propose a chain-folded

structure to explain the crystallization in such systems.  Schlesinger and Leeper24

conducted similar experiments in 1953 on gutta-percha but this time using light

microscopy and refractive index measurements.  While both these studies were largely

Figure 2.6 Single crystals of
Polyethylene after
evaporation of
tetrachloroethylene
solvent.  Pleats form due to
crystal collapse.
Micrograph is taken from
‘Polymer Single Crystals’
by P.H. Geil19.
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ignored, Jaccodine’s report25 of single crystals of polyethylene in 1955 gained attention

of several researchers who expanded on his work.  In 1957, Till26, Keller27, and Fischer28

independently reported on the growth and identification of single crystals of

polyethylene.  Since these studies, lamellar crystal habit has been shown to be the

dominant structural mode of crystallization for a large number of polymers.  The various

models proposed for the nature of these structures are:

(1) Random reentry or “Switchboard” folded model.

This model was first proposed by Flory17,29,30,31 and consists of chains randomly

folding back into the same lamella or even participating in adjoining lamellae.  The upper

and lower surfaces consist of loops of varying sizes and the amount of adjacent reentry is

small and not a necessity17,29,30,31.  The upper and lower surfaces may consist of

transitional regions that constitute a diffuse phase boundary – their density being

intermediate between the crystal and purely amorphous regions.

Figure 2.7 (A) Schematic of a Switchboard model, showing the surface of a

lamella, interlamellar region and tie chains between the lamella. (From

Mandelkern30) (B) originally proposed model for melt crystallization in

polymers17.

(A) (B)
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(2) Adjacent reentry chain-folded models (regular folding)

(i) Smooth surface model32,33:

This model is characterized by sharp phase boundary between the crystal and the

amorphous phase.  The mode of reentry of the chains is the adjacent neighbor

with only a few exceptions due to multiple nucleation and chain-end defects.  This

is a very idealized visualization of the chain folding process.

(ii) Rough surface model33:

The reentry of the chain is still in the nearest growth plane, though large

variations in the fold length may exist on a local scale.  Multiple nucleation and

chain-end defects will further contribute to a rough surface.  The overall phase

boundary is no longer sharp, though local regions may still exhibit such character.

(3) “Erstarrungsmodell” (solidification model)34,35

This model was put forward by Fischer & coworkers to explain the constancy of

the radius of gyration rg in the crystalline state (with respect to rg in the amorphous

rough chain-folded surface

multiple nucleation of molecule

on the growth surface

smooth chain-folded surface
(sharp phase boundary)
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state), as detected by small angle neutron scattering (SANS)36.  The model is

similar in conception to the “fringed micellar” morphology and is visualized in

terms of alignment of chains without a long-range diffusion process to give rise to

a lamellar morphology.  The chain sequences in proper conformations (indicated

by thicker lines in the diagram) are incorporated into the crystal without

significant reorganization of the chain conformation.

2.6 Gibbs-Thomson equation 37,38:

This well known equation is a simple application of fundamental thermodynamic

concepts applied to the above discussed lamellar crystal morphology.  The existence of a

thin plate lamellae with the thickness much smaller than the lateral dimensions is the

primary requirement and not the proof of any particular model thereof.  The schematic of

a lamellar structure, which is shown in figure below, is thus for the purposes of

illustration only and the molecular detail should not be taken literally.

Figure 2.8 “Erstarrungsmodell” (a) chain conformation in the melt state

(b) alignment of suitable conformations in to the crystal36.

(a) (b)
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For a finite sized crystal as shown above,

∆Gcrystal(T) = 2XYσe + 2l[X+Y] σ - XYl ∆Gf
∞ (T) {2.5}

At the melting point of the crystal, Tm:

∆Gcrystal(Tm)= 0 {2.6}

Assuming:

• ‘no thickening’

• XY>> l[X+Y] {true for thin lamellae with large lateral

dimensions}

• σe >> σ  {true for most polymers}

• X~Y {does not make a difference for large lateral dimensions}

Eq. (2.5) becomes ∆Gf
∞(Tm) = 2σe/l {2.7}

Now for an infinite sized crystal at Tm°,

∆Gf
∞(Tm°) = ∆Hf

∞(Tm°) – Tm° ∆Sf
∞(Tm°) = 0 {2.8}

Hence, ∆Sf
∞(Tm°) = ∆Hf

∞(Tm°) / Tm° {2.9}

Now for an infinite sized crystal at Tm,

∆Gf
∞(Tm) = ∆Hf

∞(Tm) – Tm ∆Sf
∞(Tm) ≠ 0 {2.10}

Assuming *      ∆Hf
∞(Tm) = ∆Hf

∞(Tm°){small temperature dependence is ignored}

l

X

Y

σe
σ
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 *     ∆Sf
∞(Tm) = ∆Sf

∞(Tm°)        {not a bad assumption for high Tm’s ! }

it is obtained that,

∆Gf
∞(Tm) = ∆Hf

∞(Tm°) – Tm ∆Sf
∞(Tm°) {2.11}

using eq.(2.9) ∆Gf
∞(Tm) = ∆Hf

∞(Tm°) [ 1-Tm/Tm°]     (important relation) {2.12}

comparing eq. (2.7) & eq.(2.12)

2σe/l = ∆Hf
∞(Tm°) [ 1-Tm/Tm°] {2.13}

which can be written to give the Gibbs-Thomson equation:













°∆
°= ∞

mf THl
e

mm
2

-1 T  T  
σ

{2.14}

This equation provides one of the convenient ways for estimating the value of the

equilibrium melting point Tm°, and for also obtaining the value of σe.  Both these

quantities are obtained by plotting the observed melting points Tm vs. 1/ l, where the

value of σe can be learned from the slope and the intercept gives the value of Tm°.  The

lamellar thickness ‘l ’ can often be obtained by techniques like SAXS or sometimes TEM

whereas Tm is usually obtained using DSC.  Many workers39,40,41 have elucidated the

necessary precautions in this method, some of which are:

• lateral dimensions should be >> thickness of lamellae

• The melting temperature Tm should correspond to the ‘l’, which,

however, is usually measured at room temperature42 (cause of error

for polymers that undergo thickening)42.

2.7 Lauritzen-Hoffman secondary nucleation theory 43,39

This theory explains the kinetics of crystallization in molecular terms, for linear

flexible macromolecules which are crystallized from the melt into chain folded lamellae.

This theory43 (and its various modifications32,33,39,44-47) constitutes perhaps the most

comprehensive and widely used methodology to interpret and model the crystallization

behavior of a large number of polymers.  The theory has evolved substantially since it

was first proposed and has incorporated several new concepts in order to broaden the
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scope of its predictions and also to satiate the objections of other workers in the field39.

Though the theory is best suited to describe the chain folded crystallization of

polyethylene and other flexible polymers, it has also been applied with some degree of

success to model the crystallization behavior of other more rigid chain systems such as

PEEK48.  While it is not possible to fully cover this theory in the present review, the

fundamental formalisms and the important deductions will hopefully be succinctly

explained in the forthcoming sections.

The original L-H theory and its various modifications account for a broad range

of behavior observed for crystallization of linear flexible macromolecules.  These are39:

• it accounts for the variation of initial lamellar thickness (l*) vs. supercooling

(∆Tc)

• parameters can be found that fit the variation of crystal growth rate ‘G’ vs.

∆Tc

• provides an explanation for break in temperature dependence of G

• explains the origin of σ and σe

• the generation and effect of adjacent events (tight folding) and non-adjacent

events (e.g. tie chains, loose folds, cilia)

• Variation of (a) the crystal growth rate ‘G’ and (b) quantified chain folding

(i.e. degree of tight chain folding), with the change in molecular weight

• Recent versions have also incorporated the ‘reptation’ concept into the theory

The various facets of polymer crystallization still not addressed completely by the theory

are:

• Explanation for primary nucleation and hence bulk crystallization kinetics

• Development of lamellae from a primary nucleus

• Lamellar branching giving rise to spherulites (other factors like screw

dislocations provide some explanation)

• Banding in spherulites due to lamellar twisting

• Quantified estimation of the degree of crystallinity

The treatment starts by first addressing the deposition of a first stem and later treating the

deposition of subsequent stems in a stepwise manner.  The deposition of the stems is
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visualized to take place in two steps.  In the first step the part of the chain in proximity to

the surface loses conformational entropy and becomes flattened with few crystallographic

attachments to the surface.  The state of the molecule is visualized as being similar to a

weak physically adsorbed system with the possibility of occasional point contacts on the

surface.  This short section of the molecule, after a series of events, straightens and aligns

itself to yield an activated state ∆Φ*, where the loss in entropy is equal to ∆Sf/C∞ (= -

∆Sl
*).  The entropic contribution to the free energy barrier will thus be T∆Sf/C∞ with

little/no contribution from the heat of fusion at this stage.  The second important aspect of

first stem deposition is the creation of two new lateral surfaces with work of building

them being equal to 2b0σl, where b0 is the layer thickness while ‘l’ is the length of the

chain attached.  The value of ‘l’ is treated as a variable here and later shown to average

out to lg
*.  It is these series of steps to yield an activated state, which are considered to be

most difficult and slowest.  Subsequent stem deposition from this activated state, with the

average length of the stem being lg
*, takes place without any difficulty.  According to

this, the free energies for the segment of the chain at various states can be written as:

Gsubcooled melt = Gliquid {2.15}

Gactivated state = ψ Gcrystal + (1-ψ) Gliquid + 2b0σl {2.16}

Gattached stem = Gcrystal + 2b0σl {2.17}

Also the change in free energy when going from subcooled melt to the activated stem is:

∆Gc
* = 2b0σl + ψ [a0b0l] ∆Gc {2.18}

where ∆Gc is the free energy of crystallization/unit volume and ‘ψ’ is the apportionment

factor, i.e. the fraction of free energy available due to the crystallographic attachment at a

finite and few number of sites.  The possible values of ‘ψ’ can thus be between 0 and 1.

The second important formalism is the deposition of second and subsequent stems.  The

process for second stem deposition is similar in that it also involves an activated complex

formation, although the activated stem differs with respect to the surface energy terms.

The activated complex for second stem deposition does not lead to creation of any

additional lateral surfaces but now consists of a ‘single fold’ and the ‘aligned part of the

molecule’.  The surface energy and area associated with this tight fold are σe and 2a0b0

respectively.



CHAPTER 2 49

Figure 2.9 Formation of the physically aligned activated complex and its

conversion to first crystallographically attached stem.  The first step

A0 is the slowest and rate determining step while the step A0
’ is fast39.

Crystallographic Attachment of
the first stem

Substrate

•
•

•
•
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Melt
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*A0 A0

’

B1B’ 1
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Figure 2.10 Formation of the physically aligned activated complex and its

conversion to second crystallographically attached stem.  The first

step A0 is the slowest and rate determining step while the step A0
’ is

fast.  The activated state includes a tight fold + the aligned part of the

chain39.

B1

Activated
State, ∆Φ*

with fold

lg
*

A1 A1
’

•
•
••

Crystallographic
Attached first stem

Crystallographic
Attached second stem
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The free energy for the unattached part, in the various states is then:

Ginitial = Gliquid {2.19}

Gactivated state = ψ Gcrystal + (1-ψ) Gliquid + 2a0b0σe {2.20}

Gattached stem = Gcrystal + 2a0b0σe {2.21}

Also the change in free energy when going from the subcooled melt to the activated state

is:

∆Gc
* = 2a0b0σe + ψ [a0b0l] ∆Gc {2.22}

For the nucleus to become stable, the slope of ∆G vs. ν curve should be negative.  Thus:

2a0b0σe + [a0b0l] ∆Gc < 0 {2.23}

Figure 2.11 Barrier system for the surface nucleation showing both the slow, fast

and backward steps possible.  A, A0, B1 and B are the rate determining

slow steps while A0’ and A’ are the fast steps32.
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⇒ l > 2σe/∆Gc for the nucleus to be stable
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{2.24}

This means that lmin = 2σe / [∆Hf ∆Tc/Tm] is the critical minimum length needed to form a

thermodynamically stable nucleus.  This is schematically illustrated in Figure 2.11 which

shows that the free energy actually rises as more and more stems are laid down, thus

making the nucleation of those stems thermodynamically unfavorable.  The figure also

shows the length lg
* at which the rate of stem deposition is kinetically favored, although it

does not mean that the nucleus of such a length is thermodynamically most favored

Figure 2.12 Free energy with subsequent stem deposition along the substrate for

different values of lamellar thickness’ ‘l’30.

∆Φ

νν, no. of stems
1 2 3 4 5

l = lg
*

l > 2σe / [∆Hf ∆Tc/Tm]

l = 2σe / [∆Hf ∆Tc/Tm]

l < 2σe / [∆Hf ∆Tc/Tm]

l > lg
*
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(fully extended chain crystal will be such a case and not a chain folded one). Thus the

value of l which gives the fastest substrate completion rate and thus the maximum overall

crystal growth rate ‘G’ (at that temperature) is the favored stem length for deposition,

the average being lg
*.  Subsequent flux calculations lead to an expression for lg

*.  It can

be shown conveniently by steady state flux calculations that the rate of stem deposition is

given by49:

1

00

BB-A

B)-(AAN
  S(l)

+
= {2.25}

Where N0 is the number of initial stems, soon to be involved in the first stem deposition

process.  The values of the rates along various paths A0, A, B1 and B are estimated by

Arrhenius rate expressions, the values of traditional activation energy in these being

given by free energy barriers for the respective processes.  Thus,

The above expressions suggested by Marand et al37,42,50,51 treat the pre-exponential factor

(β’) and ‘apportionment factor’ (ψ’) for the rates associated with first stem deposition to

be different than β and ψ for the second and subsequent stem deposition.  However, the

traditional L-H theory treats β=β’ and ψ=ψ’, in part due to the difficulty associated with

finding an analytical solution for the secondary nucleation rate i if these factors are not

held equal.  While the procedure for using the above equations to give analytical rate

expression for i (for two limiting cases) and the implication thereof is outlined by Snyder
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et al50,51 it is not difficult to visualize that the rationale of assigning different values for

first and later stems is based on firmer grounds.  While the short-range motions and

localized conformational rearrangements (reptation of slack) are expected to govern the

placement of the first stem, the later process is more akin to a reptation like motion of the

rest of the chain, leading to subsequent stem depositions.  In this regard, the molecular

weight dependency of β and β’ has been assumed to be different, with β’ showing little or

no dependence on molecular weight50 and β39,51,52 ∝ n-1.  For the traditional L-H

treatment the value of β (=β’) depends upon the value of the friction coefficient per chain

repeat unit ζ39.  This monomeric friction coefficient ζ can itself be described by a

Arrhenius kind of expression for temperatures greater than Tg+100K and by Vogel-

Fulcher type expression for temperatures between Tg and Tg+100K.  In these ways the

traditional L-H treatment can account for molecular weight dependence and temperature

dependence of crystal growth rate ‘G’ to a reasonable extent.

One problem with the traditional L-H theory has been that it forecasts a critical

undercooling ∆T* = 2σTm/ ψa0∆Hf where the value of lg
* is predicted to show a relative

upswing, a feature not confirmed experimentally for any polymer at any undercooling.

Several approaches have been suggested to circumvent or alleviate this dilemma where

the barrier to first stem deposition appears to become zero, this problem has been

traditionally referred to as the “δl catastrophe”43,53.  This problem is directly related to

assignment of the value for ψ and has been circumvented by assigning ψ=0 in the

traditional L-H theory.  Recent modifications have also addressed this problem by stating

that if the ψ≤0.2 the value falls close to absolute zero and is thus not expected to occur39.

The low value of ψ has additionally been argued to be justifiable on the basis of a small

number of niches expected for the first stem and thus close to nil contribution due to

enthalpy of crystallization.  Additionally, Marand et al51 have suggested that the “δl

catastrophe” is the mathematical artifact of assuming that ψ for the placement of the first

stem and ψ for the placement of subsequent stems are same.  Starting with the low ψ

formulation in the L-H theory, the initial average lamellar thickness can be calculated as:
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{2.30}

where the values of S(l) is given by equation (2.25) and the A, A0, B1 and B are given by

expressions previously stated with the value of ψ=ψ’=0 and β=β’.  With some effort, it

can then be shown that45:
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 where the second term on the right-hand side represents ‘δl’, the increment above the

minimum lamellar thickness which makes the crystal to enter the thermodynamically

stable state at the fastest rate and prevents the anomaly Tm = Tc.

Another factor of importance is the thickening of lamellar crystals (1) during the

traditional DSC heating scan, i.e. non-isothermal thickening, and also/or (2) when these

originally grown crystals are sitting at some temperature (may or may not be Tc) i.e. non-

isothermal thickening.  These thickening processes occur for a large number of polymers

although it has been advocated that a crystalline ‘αc’ relaxation, which involves chain

movement along the crystal, is a necessary condition for any thickening to occur in the

lamellae42,54.  Such thickening, when and if it occurs, will lead to lamellae of different

thickness than what had initially formed, the thickening coefficient being defined as:

 γ = l/l g
* {2.32}

the thickness of the lamellae at the time of the melting being l.  For no thickening the

value of γ will obviously be 1 and the value of melting point corresponds to the original

lamellae grown at temperature Tc.  Now, using the value for lg
* from the equation (2.31)

and incorporating any thickening effects by including equation (2.32) shown above, the

previously described Gibbs-Thomson equation (2.14) yields the value of melting point as

a function of undercooling ∆Tc.
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Now if it is assumed that δl∆Hf∆Tc << 2σeTm°, and that γ is constant then the equation

transforms to the Hoffman-Weeks relation, widely used to determine the value of

equilibrium melting point for various polymers.
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
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1 {2.34}

where Tm°hw and γhw are the respective value of equilibrium melting point and the

thickening coefficient as determined by a Hoffman-Weeks plot.  It is clear from the

above equations that this method of estimating Tm°, although providing an

approximation, is incorrect on rigorous grounds due to two major assumptions mentioned

above.  Specifically let us address the use of this technique for the more rigid and

aromatic based systems such as PEEK and some semicrystalline polyimides.  These

polymers have shown plenty of evidence for the existence of lamellar structures and

exhibit other similarities in crystallization behavior with flexible chain polymers, thus

inviting the assumption from many workers that many features of the L-H treatment can

be reasonably applied.  However, it is important to note that the main assumption of L-H

model of an adjacent reentry is not observed for this rigid chain polymers.  Also, for most

of these polymers, the assumption of a constant thickening coefficient holds well.  The

problems arise however due to the first assumption of δl∆Hf∆Tc << 2σeTm°, which in

effect pictures the contribution due to the δl term to be small in comparison to the overall

lamellar thickness in contributing to the melting point.  While this assumption holds

better for flexible polymers like polyethylene, there is not much evidence to support this

view for more rigid chain systems.  Unlike polyethylene which consists of short repeating

units and thus the δl increment can consist of several of these units, more rigid polymers

display significantly longer repeat units.  Thus for these polymers, even if the δl term
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consists of one such additional unit, then the contribution of δl term in increasing

lamellar thickness and hence the melting point cannot be ignored.  The traditional

objections for a Hoffman-Weeks analysis then become even more severe for polymers

similar to ones utilized in the current project.  Therefore such analysis can only serve as a

coarse estimate in attaining the value of Tm°.  A recent work addresses in some detail the

efficiency of this analysis for flexible chain polymers, given the degree of acceptable

error54.

2.8 Growth rate determination and regime kinetics

The above-discussed concepts lead us to calculations involving the lateral

substrate completion rate, ST as given by equation (2.35) below.  The steady state flux ST

is

∫
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e

dllS
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{2.35}

where lu is the monomer length.

This allows us to calculate the rate of stem deposition ‘i’, i.e. the surface nucleation rate

in terms of stems s-1 cm-1 by the simple relation39

i = ST /L= ST/ nla0 {2.36}

where nl is the number of stems of width a0 which make up the substrate of length L.  The

second important parameter leading up to the crystal growth rate ‘G’ is given by the

substrate completion rate ‘g’.  The substrate completion rate is given by

g = a0 (A-B) {2.37}

Together the substrate nucleation rate ‘i', and substrate completion rate ‘g’ decide the

crystal growth rate ‘G’, the exact nature of this relation being given by relative rates of i

vs. g.  This issue and the relationship between i, g & G are illustrated in Figure 2.12.
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Thus, three regimes of crystallization are considered in this problem.  In Regime

I53,55, the growing crystal nucleus sweeps completely across the crystalline interface

before any new nuclei are laid down.  In Regime II53,55, the relative rates of i vs. g are

similar, thus allowing for the new nuclei to form even before the previous layer has

completely been filled.  In Regime III56,57, a large amount of nucleation events occur and

hence little or no substrate completion takes place.  These three regimes have been

experimentally observed for a large number of polymers and the undercooling

dependencies of the growth rates in accordance with the above analysis has been

confirmed (when using some adjustable fitting parameters).

Quantifying the analysis further, from the relations shown (Equations 2.35, 2.36

and 2.37 above and Equations 2.28, 2.29 and 2.31 shown previously) one obtains the

substrate nucleation rate i and substrate completion rate g as50:
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i

i
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GI=b0iLb0

L

GII =b0 (2ig)1/2

GIII =b0iL

i~g

i<<g

i>>g

Figure 2.13 Scheme illustrating the rates of stem deposition during three different

regimes of crystallization.  ‘i' represents the rate of stem nucleation

whereas ‘g’ represents the rate of substrate completion.
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As has been discussed before the parameter β in the above relations can be given by

Vogel-Fulcher or Arrhenius type expressions.  In the Arrhenius region, this factor can be

described as:
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Jβ {2.39a}

where U* is the activation energy and J is a factor with some degree of temperature

dependence.  In the recent version of the theory39 it is given as:
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Here ‘kT/h’ is the frequency factor in events per second and ‘n’ is the number of repeat

units.  ‘κ’ is a numerical constant which is evaluated from the monomeric friction

coefficient.  These equations when substituted in the relations shown in the schematic

give the crystal growth rate ‘G’ for the three different regimes as:

GI = G0I exp (-U*/R (T-T∞)) exp (-KgI/T∆Tc) {2.40a}

GII = G0II exp (-U*/R (T-T∞)) exp (-KgII/T∆Tc) {2.40b}

GIII  = G0III exp (-U*/R (T-T∞)) exp (-KgIII/T∆Tc) {2.40c}

Where,
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The value of the nucleation constants KgI, KgIII, KgII and G0i can thus be determined by

plotting the spherulitic growth rate data in the form LnG+ U*/R (T-T∞) vs. 1/ T∆Tc.

These types of plots are usually referred to as L-H plots and Figure 2.13 illustrates the

typical plots for polymers showing these transitions.  The first exponential term in

equation (2.40), exp (-U*/R (T-T∞)) accounts for the chain transport effects to the

interface while the second term exp (-Kgi/T∆Tc), accounts for the secondary nucleation

effects.  The widely utilized values for U* and T∞ are 1500 cal/mol and Tg-30K for a
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large number of polymers39,43.  L-H plots have also been widely utilized to obtain values

for σσe if the values of Tm°, ∆Hf and b0 are known40,58,59,60, or otherwise sometimes to

obtain Tm° 54,61,62.

Figure 2.14 A schematic illustrating the conversion of growth rate data to a L-H

plot showing the three regime transitions38.  The values of regime

constants are calculated by the slope in various regimes and are used to

give the product of surface energy terms σσe.  All three regimes or

even a single regime transition may not be experimentally observed for

many polymers.
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2.9 Primary nucleation:

For polymer crystallization to start, the primary nucleation first needs to take

place.  The nucleation itself can be defined as formation of a small amount of crystalline

material due to fluctuations in density or order in the supercooled melt63.  The formation

of these initial or primary nuclei is the first step inaugurating crystallization and the

phenomenon is called primary nucleation.  The continuation of crystallization on the

growth surface by induction of more and more polymer molecules is referred to as

secondary nucleation and the previously discussed L-H theory addresses this issue.

Another way of classifying nucleation is by invoking the prerequisite for the original site

where the nucleation occurs.  If no second surface or existing nuclei (i.e. any type of

second phase) is present and the nuclei formation takes place spontaneously only due to

supercooling the phenomenon is referred to as homogenous nucleation.  However, if any

second phase is required (it may be a foreign particle or surface from the same polymer

nuclei/crystal), then the nucleation is termed heterogeneous nucleation.  Wunderlich et

al.5 based on an earlier work64 have further advocated the subdivision of this

classification by incorporating the third category called self-nucleation.  This nucleation

is due to preexisting/residual nuclei that survived the initial melt conditions (or the

dissolution conditions if it is solution crystallization).  Later studies covered in this report

will show results, which indicate that this self-nucleation is very important with respect to

understanding the melt crystallization behavior of semicrystalline polyimides, the subject

of this study.  It should be clear that while primary nucleation can be either homogenous

or heterogeneous, secondary nucleation by its very definition is heterogeneous in origin.

Yet another way of categorizing primary nucleation is on the basis of time dependent

effects at any temperature.  If the nucleation is such that all nuclei start forming at

approximately the same time then the nucleation is referred to as athermal nucleation.

One aspect of such nucleation is that it leads to spherulites of roughly the same size

during isothermal crystallization.  If the nucleation on the other hand is such that new

nuclei form throughout the crystallization at a particular temperature, and thus different

spherulitic (crystal) sizes are obtained than the nucleation is referred to as thermal
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nucleation.  It thus may not be difficult to visualize that homogenous nucleation is often

of the thermal type (the converse is not true) whereas the heterogeneous nucleation may

be thermal or athermal.  In the case of self-nucleation, the nucleation type has generally

been observed as athermal although work in the present project has confirmed that this is

not a necessary condition.

For the formation of stable nuclei to take place (primary or secondary), the free

energy barrier to crystallization needs to be overcome.  The size of this critical nucleus

required obviously depends upon this free energy barrier, larger critical nuclei requiring

longer times to form.  The concept is very similar to one discussed in L-H theory

previously and is illustrated in Figure 2.14.

Figure 2.15 Schematic illustrating the variation of free energy with nucleus size.

The initial free energy barrier needs to be crossed for the nucleus to

become stable5.

∆G
0 Size

Embryo

Critical
nucleus

Stable
Region
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In any nucleation process, the free energy of the nucleation process (crystallization) is

given by:

∆G=∆Gc + ∑ γ*A {2.43}

where the specific surface free energy is given by γ*.  Primary nucleation involves the

largest specific area while the area is somewhat reduced for secondary nucleation on the

surface.  Tertiary nucleation, which can be defined as nucleation at an edge, involves yet

lesser specific area.  Thus, in terms of difficulty of the nucleation process, it goes as5:

Primary nucleation > Secondary Nucleation > Tertiary Nucleation.

The large specific area to volume ratio of such entities offsets the decrease in free energy

that can be obtained by crystallizing the small volume element of the nucleus.  The

fundamentals of such a nucleation process can be investigated by performing free energy

calculations on the incipient nucleus.  In this regard, for the general case of a spherical

nucleus of radius ‘r’, the free energy change can be expressed as:

∆G = 4/3πr3∆Gc + 4πr2γ* {2.44}

These two opposing contributions to the free energy lead to an initial rise in ∆G till a

certain critical maximum in free energy surface is reached at ‘r*’, beyond which there is a

(a) (b) (c)

Figure 2.16 Types of Crystal Nuclei (a) Primary nucleus (b) Secondary Nucleus

(c) Tertiary Nucleus
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precipitous drop in the free energy leading to formation of a stable nucleus.  The critical

point is found out by differentiating the above equation w.r.t. ‘r’ and equating it with

zero.  The values for such critical points thus obtained are2:
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Figure 2.17 Variation of total free energy with size depends upon two opposing
factors, the gain being due to increased surface area while the loss due
to free energy of crystallization.  Also, the critical size for stable nuclei
formation as well as the critical free energy barrier decrease with
increasing undercooling2,38.
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The critical size ‘r*’, and the critical free energy barrier are strongly dependent upon the

undercooling ∆Tc.  While r*∝1/ ∆Tc, the free energy barrier ∆G*∝ 1/∆Tc
2.  While the

above analysis is for a spherical nuclei, the problems for other shapes such as cylindrical

are more suited to polymeric nucleation and expressions for those can be similarly

derived.  It is very important to mention here that the shape of the nucleus will govern the

final morphology of the crystallite, with the initial thickness of the crystallite being

related to the critical size of the nucleus2. Turnbull and Fisher gave the steady state rate

of nucleation per unit volume and time on the basis of transition state theory as65:
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where N0= n1kT/h is the number of molecules in a unit volume of the liquid.  In this

expression, ∆G* is the activation energy derived above and ED is akin to the free energy

of activation for diffusion of chain segments to the phase boundary.  The temperature

dependence of the transport term ED, is similar to that of viscosity with it remaining

nearly constant at high temperatures and increasing rapidly at temperatures close to the

glass transition.  Till moderate undercoolings, the nucleation is dominated by the ∆G*

term which is ∝ 1/∆Tc
2.  Thus the nucleation rate is zero at Tm and has a large negative

temperature coefficient just below Tm due to exp(-∆G*/RT).  At still larger undercoolings

the influence of ED term begins to increase and the nucleation rate reaches a maximum.

At temperatures below the maximum, the nucleation rate is dominated by the transport

term and has a large positive temperature coefficient with the rate falling to zero at

temperatures below the glass transition.  The above discussion can be applied with little

modifications to heterogeneous nucleation with only the value of the constants varying2.

The important geometry’s of the heterogeneous type nucleation to which this type of

analysis can be applied are fringed micelle and folded chain type nuclei.  It is also

important to recognize that various facets of the nucleation theory predict the

experimentally observed features like, the negative temperature coefficient, and the

variation of critical nucleus size (and hence the crystallite thickness) with undercooling.

These predictions, however, are based on the most general premises, and thus do not
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depend on the form, structure or chain disposition within the nucleus.  The application of

nucleation theory to the chain folded nucleus (L-H treatment), on its own, is thus not the

proof of chain folded crystallization being prevalent2,31,30.

2.10 Spherulites

The existence of these large (i.e. micron level) three dimensional supramolecular

structures usually possessing three dimensional symmetry is a common occurrence not

only in polymers but also in a large variety of inorganic substances and metals66,67.  In

fact, these kinds of structures have been found in rock specimens from the moon, which

indicates that they grow during formation in rock strata68!  In the case of polymers, these

types of structures are conveniently observed in polarized optical microscope and consist

of radial fibrils originating from a primary nucleus at the center.  The large varieties of

such structures that have been experimentally observed prohibit a strict definition though

some general features can be summarized.  The spherical shape arises usually due to

small angle branching and splaying microstructure69.  The initial stages of such a

structure may not be spherical but rather may resemble a sheaf kind of morphology.

Figure 2.18 Tie chains

in polyethylene spherulites

crystallized in presence of

n-parafin, C32H66, and

then extracted with xylene

at room temperature.

(Keith and Padden70 et al.)
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Although the radial equivalency of this structure is usually a good approximation, this

may not be true for the central core and also when the overall morphology becomes very

coarse.  The fibrils consist of lamellae radiating outward with the chain folding direction

generally being transverse to the growth direction.  Tie chains between these lamellae

play an important role in improving the mechanical properties with these bridging units

being both interlamellar and interspherulitic in origin.  These links (Figure 2.17 from

Keith and Padden70) help in maintaining the interlamellar connections when the polymer

is drawn.  On the basis of birefringence, the spherulites can be divided into the following

categories71:

(a) Negatively birefringent: These are the most prevalent types of spherulites present in

polymeric materials and are characterized by their refractive index along the

transverse direction being greater than along the growth direction72.  This optical

character is due to the chain direction on an average being in transverse direction, this

being a result of chain disposition within a lamella and lamellar arrangement within a

spherulite.

(b) Positively Birefringent: These type of spherulites are observed when the refractive

index along the radial direction exceeds that along the transverse direction.  These

types of spherulites are less common as the polarizability along the chain direction

usually exceeds than along the other two principal directions.  Such spherulites have

been observed for polymers that have strong dipoles at large angle to the chain

backbone and also exhibit chain tilt with respect to the growth direction.

(c) Zero birefringence: These type of spherulites are sometimes when the optic axis of

the spherulites is aligned parallel to the viewing direction73.  Random distribution of

crystallites within the spherulite may also lead to such a structure.

(d) Chain-extended spherulites: These type have been observed during high pressure

crystallization of polyethylene74.

It has been traditionally believed75 that smaller spherulitic sizes result in better impact

strength and higher elongation to break.  However, experimental studies supporting such

conclusions continue to be scarce.  Sharples76 observed that the yield stress in Nylon 66

samples increased by 30% as the spherulitic size was decreased from 50 microns to 3

microns.  Kargin et al77. demonstrated over a wide range of spherulitic sizes that the
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mechanical properties deteriorated by 2-3 times whereas the elongation to break

decreased from 500% to 25% as the spherulitic sizes were increased.  Way et al78.

showed that the yield stress of isotactic polypropylene goes through a maximum and then

drops precipitously as the average spherulitic size was increased.  This transition was

concluded as being a result of deformation mechanism shifting from intraspherulitic yield

to interspherulitic yield.  Reinshagen79 observed that isotactic polypropylene samples

prepared under lower undercooling gave brittle interspherulitic fracture whereas samples

prepared under larger undercoolings showed strain whitening and yielding before

fracture.

2.11 Bulk crystallization kinetics-avrami analysis

Avrami Analysis80,2,5 continues to remain the most popular method for obtaining

bulk crystallization kinetics information.  Its widespread use to obtain quantitative bulk

crystallization kinetics knowledge is in part due to the relative ease with which the

analysis can be applied. Unfortunately, this method has often been utilized without

recognizing the assumptions and limitations of such an analysis, resulting in wrongful

interpretations of experimental data.  Before applying this analysis and correctly

interpreting the data, it is important to understand the grounds on which this procedure

was derived and the recognition of the assumptions that are involved.  The mathematical

foundation of this analysis is based on the famous raindrop problem first solved by

Poisson81 in 1837, which states that for raindrops falling randomly, the probability of a

point being passed over by exactly F wavefronts is given by

!
)(

F

Fe
FP

FF−

=  {2.48}

where F  is the average number of such wavefronts passing through a point.  Thus

considering these wavefronts as spherulites in bulk crystallization, the probability of any

point not being run over by a spherulite is given by value of P(F) at F=0.  Thus

FeP −=)0( {2.49}
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P(0) also represents the points which are still amorphous and not been run over by the

spherulites and thus is equal to amorphous fraction 1-θ, where θ is the amount of fraction

crystallized.
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1

1
ln

)0(1

F

F

eP F

−−=⇒

=
−

⇒

==− −

θ
θ

θ

{2.50}

Now the problem reduces to obtaining the form of the function F  for different types of

geometries that may be involved.  The time dependency of the crystalline fraction in the

above analysis enters due to time dependency of the function F , the average number of

wavefronts passing in time ‘t’.  For some particular cases, this function can be calculated

to give the following relations5,82:

(a) 2-dimensional case of growing discs starting at the same time

22NtGF π=  {2.51}

where G is the growth rate of growing discs, N is the average number of such

discs/area and t is the elapsed time.

(b) 2-dimensional case of growing discs forming at a rate N�

32

3
tNGF �

π= {2.52}

(c) 3-dimensional case of growing spheres starting at the same time

33

3

4
NtGF π= {2.53}

(d) 3-dimensional case of growing spheres forming at a rate N�

43

3
tNGF �

π= {2.54}

In general then, the form of the equation is of the type

)exp(1 nKt−−=θ {2.55}

which is the famous Avrami equation and the ‘K’ & ‘n’ are the two Avrami parameters

usually referred to as the bulk crystallization constant (K) and Avrami exponent (n).  As

should be clear from the above analysis, ‘K’ is dependent on the shape of the growing

crystalline entities and the amount and type of nucleation.  The exponent ‘n’ is dependent
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upon the nucleation type and growth geometry but not on the amount of nucleation.  In

the cases illustrated above it was tacitly assumed that the nucleation at the growth surface

of the growing discs or spheres was the only governing factor in maintaining the growth

rate G.  In many instances, transport factors (like transport of heat of crystallization or

transport of crystallizable molecules to the interface) become rate determining in

controlling the rate of growth.  These kind of problems involve a moving interface across

which the transport phenomenon need to be considered and are usually referred to as

Stefan problems83 who applied it to study the thickness of polar ice caps. An example of

this in polymers is the transcrystallization where nucleation is not the rate-determining

factor.  The solution to these kinds of problems is usually of the type5,82

2/1
2





=

t
G

κ
 {2.56}

where κ  is the diffusion constant.  Thus the exponent of the time decreases by r×0.5 for

Gr present in the equation if the rate-determining step is transport/diffusion controlled.

The various Avrami exponents associated with different nucleation types and crystal

geometry’s are shown in table 2.

Table 2.2. Avrami exponents for various types of crystal growth geometry’s82.

Avrami Exponent Crystal Geometry Nucleation Type Rate Determination

0.5 Rod Athermal Diffusion

1 Rod Athermal Nucleation

1.5 Rod Thermal Diffusion

2 Rod Thermal Nucleation

1 Disc Athermal Diffusion

2 Disc Athermal Nucleation

2 Disc Thermal Diffusion

3 Disc Thermal Nucleation

1.5 Sphere Athermal Diffusion

2.5 Sphere Thermal Diffusion

3 Sphere Athermal Nucleation

4 Sphere Thermal Nucleation



CHAPTER 2 72

Time

E
nd

o 
(d

H
/d

t)

∫

∫
∞















=
∞∆

∆==

0

0

)(

)(
)(

dt
dt

dH

dt
dt

dH

H

tH
tX

t

cθ

Figure 2.19 Utilization of isothermal crystallization data by either DSC or by volume30

measurements can give the degree of transformation, which can subsequently be utilized

for Avrami analysis.
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Figure 2.20 The characteristic Avrami plots obtained by isothermal

crystallization experiments for a polyimide84.  The initial slope of

the curves gives the Avrami constant ‘n’, which is related to the

crystal shape and nucleation type.
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The traditionally utilized methods for measuring the crystalline fraction θ, have been the

volume measurements and DSC in which the fraction θ is given respectively as:

Volume measurements: 
0

0

VV

VVt

−
−=

∞

θ {2.57}

DSC measurements 
)(

)(

∞∆
∆=
H

tHθ {2.58}

Where the Vt,V0 and V∞ represent the sample volume at time t, t=0 and at infinite time

respectively.  ∆H(t) and ∆H(∞) represent the heat of crystallization obtained at time t and

after infinite time.  Figure 2.18(a) and Figure 2.18(b) illustrate the type of data obtained

by the calorimetric and volumetric techniques and Figure 2.1984 illustrates the conversion

of such a data to give the characteristic Avrami plot.  The Avrami equation (2.55) is

analyzed by taking the double logarithm and writing in the form:

nLogtLogKLog +=−− )]1ln([ θ {2.59}

The crystalline fraction θ, is plotted in the form Log[ -ln(1-θ) ] vs. Log(t) to yield the

characteristic Avrami plot.  The initial slope of this plot (such as the one shown in Figure

2.19) gives the Avrami constant ‘n’.  The value of K is usually obtained by using the

value of θ at t=t1/2 and substituting in equation (2.56).  With little effort, equation (2.56)

yields:

nt
K

2/1

2ln= {2.60}

However before these techniques are utilized and interpretations regarding the

crystallization kinetics made with the values of ‘K’ and ‘n’, it is important to recognize

the inherent problems in Avrami analysis.  The problems with the basic Avrami Analysis

are85,86,87,88:

(a) The Avrami equation rigorously applies only to problems where the volume does not

change.  This is never the case with crystallization in polymers.
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(b) It assumes constancy in the shape of growing disc/rod/sphere

(c) Constant radial growth is assumed (G~t-1/2 has also been considered)

(d) The analysis does not account for the presence of an induction time

(e) The nucleation mode is assumed to be unique i.e. thermal or athermal but not both

(f) Complete crystallinity of the sample

(g) Random distribution of nuclei

(h) Constant value of radial density in the growing structures which is assumed in the

derivation does not usually occur experimentally

(i) Holds well for primary crystallization only

(j) Does not account for absence of overlap between growing crystallization fronts

It is thus not surprising that non-integer values of n are often obtained.  As shown in

Table 2, it is not difficult to assign the experimentally obtained value of n by selecting an

appropriate geometry.  This kind of attribution of the exponent ‘n’, without independent

microscopical evidence is one of the major pitfalls of most studies in the literature

utilizing this analysis.  Independent microscopical evidence is critical before assignment

of ‘n’ to a particular geometry can be justified.
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