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Large clusters or flocs have been grown on the computer using the models introduced by Void and 
Sutherland and by Eden. Some of the properties of these dusters have been analyzed and compared 
with the same properties of dusters grown using the diffusion limited growth process of Witten and 
Sander. For all three models the radius of gyration (Rg) is related to the number of particles in the 
duster (N) by an expression of the form Rg ~ N a (in the limit of large cluster sizes). In two-dimensional 
simulations the Eden (surface growth) model gives compact clusters with a radius of gyration exponent 
(3) very close to 1/2. For the Vold-Sutherland (linear particle trajectory) model the exponent 3 has 
a value close to 1/2 for two-dimensional clusters and close to 1/3 for three-dimensional clusters, if 
they are sufficiently large. For the Witten-Sander model 3 is definitely larger than 1/2 in two di- 
mensions (~3/5) and larger than 1/3 in three dimensions (~2/5). Other geometric properties of the 
dusters have been determined such as the density--density correlation function and the number of 
particles N(I) within a distance (l) of the center of mass. For the two dimensional Witten-Sander 
model the dependence of Rg on iV, the dependence of N(I) on/, and the density-density correlation 
function can be described in terms of a single parameter (the Hausdortf dimensionality--D). The 
significance of the Hausdortf dimensionality is outlined and the concept of Hausdorff dimensionality 
is used in the discussion of the structures generated using all three models. 

INTRODUCTION 

The  recent  work  o f  W i t t e n  a n d  S a n d e r  on  
d i f fus ion- l imi ted  c lus ter  g rowth  in  two-d i -  
m e n s i o n a l  space (1) a n d  o u r  own  ex tens ion  
to h igher  d imens iona l i t i e s  (2) has  s t i m u l a t e d  
us to e x a m i n e  o the r  m o d e l s  for  c lus ter  for- 
ma t ion .  One  o f  the  ear l ies t  m o d e l s  for  the  
c o m p u t e r  s i m u l a t i o n  o f  floc f o r m a t i o n  in  
three  d i m e n s i o n s  was i n t r o d u c e d  b y  V o l d  
(3). In  this  mode l ,  par t ic les  wi th  r a n d o m  l in-  
ear  t ra jec tor ies  are  a d d e d  to a g rowing  c lus ter  
o f  par t ic les  a t  the  pos i t i on  where  they  first 
con tac t  the  dus t e r .  R e o r g a n i z a t i o n  o f  the  
d u s t e r  is no t  pe rmi t t ed ,  O n e  o f  the  mos t  im-  
p o r t a n t  results  o f  Vo ld ' s  s imu la t i ons  was tha t  
the  n u m b e r  o f  par t ic les  wi th in  a length  l o f  
the  center  o f  gravi ty  is given b y  N(I)  "~ 12.33, 

for N(I) < 40-60% o f  the  to ta l  n u m b e r  o f  

1 Contribution No. 3198. 

part icles in the  cluster (N). Vold ' s  work  was 
cri t icized by  Suther land  (4) who po in ted  ou t  
that  the p rocedures  used in Vold ' s  s imula t ion  
d id  no t  result  in par t ic le  t ra jector ies  with ran-  
d o m  di rec t ion  and  posi t ion.  After  cor rec t ion  
of  this deficiency, Su the r l and  found  tha t  N(I) 

l 278. Suther land  in te rpre ted  this result  as 

" I t  seems highly p robab le  tha t  as the  floc size 
increases the  core reaches a Constant poros i ty  
o f  abou t  0.83."  Su ther land  also ind ica ted  tha t  
two-d imens iona l  s imula t ions  (with 500 par-  
ticles pe r  cluster) gave the result  N(I) ~ 12°. 
In  this paper ,  the  results o f  s imula t ions  using 
the V o l d - S u t h e r l a n d  (VS) m o d e l  in two- a n d  
th ree-d imens iona l  space are repor ted.  The  
clusters used in  this s tudy are m o r e  than  an  
order  o f  magni tude  larger than  those s imula ted  
by  Void  and  Suther land.  O u r  results  indica te  
that  N(I) ~ 1275-+0"0'1 for t h ree -d imens iona l  
V o l d - S u t h e r l a n d  clusters and  N(1) ~ 11"91-+°°3 

for two-d imens iona l  V o l d - S u t h e r l a n d  clus- 
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ters. These results were obtained using clusters 
of 10,000 particles per duster and confirm 
Sutherland's interpretation of his results ob- 
tained using much smaller clusters. 

We have also investigated the Eden (5) 
model of duster formation using a lattice 
model in which particles are added at ran- 
dom with equal probability to any unoccu- 
pied site adjacent to one or more occupied 
sites. The main emphasis of this paper is the 
properties of the two-dimensional cluster 
since it is much easier to approach the limit 
N ~ ~ in two-dimensional simulations. 

The concept of Hausdorff (6) or fractal (7) 
dimensionality has been used to analyze the 
results of the computer simulations described 
in this paper. This idea is a particularly valu- 
able and convenient way of describing many 
of the geometric properties of structures 
which are self-similar or statistically self-sim- 
ilar (i.e., structures which have dilation sym- 
metry). In the case of ordinary (compact) 
objects, it is possible to write down many 
geometric relationships in terms of the (or- 
dinary Euclidean) dimensionality of the ob- 
ject (d). A few examples are (i) Rg ~ M lid 

where Rg is the radius of gyration and M is 
the mass or volume. (ii) M ( I )  "-, l a where 
M(1) is the mass contained within a distance 
l of the center of the object. (iii) P ~ M z/d 
where P is the area of the projection onto a 
two-dimensional surface. 

For more complex structures with a well- 
defined fractal or Hausdorff dimensionality 
(D) very similar relationships exist (Rg 
"-" M I/v, M ( I )  ~ l D, P ~ M 2 / D .  • • etc.). The 
Hausdorff dimensionality (D) can be deter- 
mined from any of these relationships (for 
example, by measuring the radius of gyration 
as a function of the mass). Once D has been 
determined from one of these geometric re- 
lationships all the others are known. Another 
very important quantity which characterizes 
self-similar objects is the density-density cor- 
relation function C(r) (r is distance). If the 
object has a Hausdorffdimensionality D and 
an ordinary Euclidean dimensionality d then 
C(r) "-~ r 09-a). 

The Witten-Sander model for diffusion- 
limited aggregation (1) provides a good il- 
lustration of how these ideas can be applied. 
The Hausdorff dimensionality for the statis- 
tically self-similar random clusters generated 
by this model was originally determined from 
the dependence of the density-density cor- 
relation function C(r) on distance (r). 

For the case of clusters grown on a two- 
dimensional lattice (d = 2) it was found (I) 
that D .~ 5/3. This result implies that Rg 

M s (fl = 1 / D  = 3/5) and this result was 
confirmed by determining the radius of gy- 
ration as a function of mass (M) (or the 
number of particles in the duster (N)). If D 

5/3 we also expect that M ( l )  ~ l 5/3. In this 
paper we show that this expectation is valid 
( N ( 1 )  ~ /1.707_+0.022(~5/3)). 

One of the main objectives of this paper 
is to determine if the concept of Hausdorff 
dimensionality can also be applied to dusters 
grown using the E and VS models. 

It should be noted that in real systems the 
property of self-similarity or dilation sym- 
metry may extend over only a limited range 
of length scales. In this paper we are con- 
cerned mainly with the structure of clusters 
on length scales between some lower cut off 
length and lengths approaching the overall 
size of the cluster (which may be arbitrarily 
large). For this reason we are interested in 
the geometric properties in the limit N 
oo. If the structure is statistically self-similar, 
we expect all of the geometric relationships 
discussed above (and many others) to give 
the same value for the Hausdorff dimen- 
sionality (D). However, if we are not suffi- 
ciently close to the N --~ oo limit, different 
geometric relationships may give different 
numerical values for D when they are used 
to analyze the structure. However, as the 
N ~ ~ limit is approached, the values for 
D obtained from different methods of anal- 
ysis should converge to a single value (Doo). 

The Hausdorff dimensionality has impor- 
tant implications for colloidal systems. If the 
Hausdorff dimensionality (D) is equal to the 
Euclidean dimensionality (d) then as the 
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cluster grows larger and larger it will ap- 
proach a constant limiting density or poros- 
ity. However, i f D  < d (as is known to be the 
case for the WS model) the density of  the 
duster  will become smaller and smaller as 
the cluster grows larger and larger. The Haus- 
dorff or fractal dimensionality also has im- 
portant implications for many other physical 
properties (8, 9). 

The work of  Suthefland (4) provides us 
with an estimate of  the Hausdorff dimen- 
sionalities of  dusters grown using the VS 
model in two and three dimensions from the 
dependence of  N ( I )  on / .  In two dimensions 
N ( I )  ~ •2.0 implies D = d = 2 and in three 
dimensions N ( I )  ~ l 2.87 implies D = 2.87 pro- 
viding the N ~ ~ limit was approached suf- 
ficiently closely. 

S I M U L A T I O N  P R O C E D U R E S  

Our general approach to the simulation of  
tloc formation using the mechanism of  Void 
and Sutherland is to employ the methods of  
vector analysis (10) (rather than the analytic 
geometric approach of  Void (2) and Suth- 
erland (3)). The first step is to generate a unit  
vector with random orientation. This is 
accomplished by generating three random 
numbers (two in the case of  a two-dimen- 
sional simulation) uniformly distributed over 
the range 0-1. I f  the vector defined by these 
three (two) random numbers lies outside of  
a sphere (circle) of  unit radius, it is rejected. 
Otherwise, the vector is normalized to pro- 
duce the random unit vector e. A second 
vector d with random orientation is gener- 
ated in the same way, and a vector b ran- 
domly oriented perpendicular to e is ob- 
tained from 

b = a × e .  [1] 

The vector b is normalized to a length of  rma~ 
+ 1.0 (where rm~ is the maximum distance 
from the center of  any particle in the duster  
to the origin in units of particle diameters) 

h 
b '  = ~-~ (rmax + 1.0). [2] 

Finally another random number (y) is gen- 
erated (0 ~< y ~< 1.0), and the equation for a 
random linear trajectory which passes within 
a distance of  rma~ + 1.0 of  the origin is given 
by 

t = y(~/(a-1))b' + se  [3] 
o r  

t = b" + se  (b" = y(l/(a-l))b') [3a] 

where s is the distance along the trajectory 
and d is the dimensionality of the space used 
in the simulation. 

Having generated a random trajectory, the 
next step is to determine which (if any) of 
the spherical particles of  unit diameter have 
their centers within a distance of 1 particle 
diameter from t. For a point at position r, 
the perpendicular (minimum) distance from 
r to t is given by 

d = (r - b '~) × e. [4] 

We must now find which of  the particles 
in the clusters whose centers are within a 
distance of 1.0 from the origin will be first 
touched by a sphere of unit diameter moving 
along the trajectory t. The position of first 
contact along the trajectory t = b" + se is 
given by 

s = r - e  - (1.0 - d2) 1/2. [5] 

The simulation is started out with a single 
spherical particle at the origin, and particles 
are added to the cluster using the procedure 
outlined above. 

The "Eden"  model (5) is so simple that 
large dusters (100,000 particles per cluster) 
can be generated with the crudest algorithm. 
We simply use random numbers to pick lat- 
tice sites at random and examine the nearest 
neighbor sites to determine if  a "particle" 
should be added. The maximum magnitude 
for the value of any trial coordinate was re- 
stricted to 1 + Cma x where Cma~ is the max- 
imum value for the magnitude of any of  the 
coordinates for any lattice site already oc- 
cupied. To generate even larger clusters using 
the Eden model, a second algorithm was de- 
veloped in which a list of  unoccupied inter- 
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20| PARTICLE DIAMETERS 
FIG. 1. A typical cluster o f  10,000 particles grown in 

a two-dimensional simulation using the Vold-Suther-  
land (VS) model. 

4 0 1  LATTICE UNITS 
FIG. 3. This figure shows a cluster of  10,000 particles 

grown on a square lattice using the Wit ten-Sander  
model of  diffusion limited cluster formation. 

face sites is maintained and updated at reg- 
ular intervals. A site is picked at random 
from this list and is occupied if it has not 
been previously occupied since the last up- 
date of the list. 

RESULTS 

Several large clusters (up to 20,000 parti- 
cles per duster) were grown in two-dimen- 
sional space using the VS model with the 
procedures outlined in the previous section. 
Figure 1 shows a typical cluster of 10,000 
particles. Using the Eden model, clusters 
with up to 200,000 particles per cluster were 
grown. Figure 2 shows a two-dimensional 

141 LATTICE UNITS 
FIG. 2. A cluster of  10,000 particles grown on a two- 

dimensional lattice using the Eden model. 
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Eden duster of 10,000 particles. For the pur- 
pose of comparison, a two-dimensional dus- 
ter of 10,000 particles grown using the Wit- 
ten-Sander model for diffusion-controlled 
cluster formation is shown in Fig. 3. 

These two-dimensional clusters were an- 
alyzed in several ways to obtain estimates of 
their Hausdorffdimensionalities. For dusters 
grown by all three mechanisms, the depen- 
dence of the radius of gyration (Rg) on the 
number of particles in the duster (N) can be 
expressed as 

Rg ~ N ~ [6] 

for sufficiently large cluster sizes. The Haus- 
dorff dimensionality (D) is given by ( 1 l) 

D = 1/ft. [7] 

5 1  i i i i ) i i i W S ~  VS 
4 ~ E 

A 3 I 

g I 
c 
~ 2 

1 

I I I I i 1 i i 
4 6 8 10 

tn  (N} 

FIG. 4. The dependence of  In (Rs) on In (N) for the 
WS, VS, and E models of  cluster formation. 
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T A B L E  I 

Radius of  Gyration Exponent (fl) Obtained from a Two-Dimensional 
Vold-Sutherland Model of  Cluster Formation 
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Cluster size 

1250 2500 5000 10,000 20,000 

Average 

0 . 4 8 7  0 . 5 0 3  0 . 5 0 3  - -  M 

0 . 5 3 5  0 . 5 1 2  0 . 5 0 6  0 . 5 0 8 6  - -  

0 . 4 9 7  0 . 4 9 3  0 . 5 0 9  0 . 5 0 8 9  0 . 5 1 0 2  

0 .501  0 . 5 0 5  0 .511  0 . 5 1 1 6  - -  

0 . 5 1 4  0 . 5 1 9  0 . 5 2 8  - -  - -  

0 . 5 0 6  0 . 5 1 6  0 . 5 0 7  - -  - -  

0 . 5 2 7  0 . 4 9 6  0 . 5 0 4  0 . 5 2 0 7  0 . 5 1 3 7  

0 . 4 9 2  0 . 5 2 3  0 . 5 2 3  0 . 5 1 2 2  0 . 5 0 6 2  

0 . 5 0 7  + 0 . 0 1 4  0 . 5 0 8  +- 0 . 0 0 9  0 .511  --- 0 . 0 0 8  0 . 5 1 2  + 0 . 0 0 6  0 . 5 1 0  + 0 . 0 0 0 9  

Figure 4 shows the dependence of  In (Rg) on 
In (N) for the E, VS, and WS models for 
typical clusters of  10,000 (WS) or 20,000 (VS, 
E) particles. The radius of  gyration exponent 
/~ is obtained from a least-squares fit of  a 
straight line to the coordinates (ln (Rg),  

In (N)) obtained from the last 50% of inter- 
mediate clusters obtained during the for- 
mation of  a cluster. Results obtained in this 
manner are given for the VS model in Table 
I and the E model in Table II. From the clus- 
ters of  10,000 particles, a radius of  gyration 
exponent (~) of  0.512 _+ 0.006 was obtained 
for the VS model corresponding to a Haus- 
dorff dimensionality of  D ( V S ) =  1.95 
_+ 0.002. The results shown in Table II in- 
dicate that the apparent value for the radius 
of  gyration exponent obtained using the 
Eden model increases with increasing cluster 
size. Figure 5 shows a plot of  ~ vs 1/N. There 
is no fundamental reason why these data 

T A B L E  1I 

Radius of  Gyration Exponents Obtained from the 
Two-Dimensional Eden Model 

N = 1 0 0 , 0 0 0 - 2 0 0 , 0 0 0  (6 dusters) 
N = 5 0 , 0 0 0 - 1 0 0 , 0 0 0  (11 clusters) 
N = 2 5 , 0 0 0 - 5 0 , 0 0 0  (19 dusters) 
N = 1 2 , 5 0 0 - 2 5 , 0 0 0  (26  clusters) 
N = 5 , 0 0 0 - 1 0 , 0 0 0  (26 dusters) 

0 . 4 9 8 8  + 0 . 0 0 0 4  

0 . 4 9 8 4  __+ 0 . 0 0 0 8  

0 . 4 9 7 6  __+ 0 . 0 0 0 6  

0 . 4 9 5 7  _____ 0 . 0 0 0 8  

0 . 4 9 2 5  + 0 . 0 0 2  

should be plotted in this way. However, if 
Fig. 5 is accepted at face value, a limiting 
exponent o f ~  ~ 0.499 + 0.001 (N---~ oo) is 

0.500 ~ , , , 7 - -  

0.499 

0.498 

0.497 

0.496 

0.495 

0.494 

0.495 

0.492 

0.491 

0.490 

\ 

\ ~ \ \ \  

-J- \ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

i ~ t i 
2 4 6 8 

'I05/N 

\ 

10 

FIG. 5. Dependence of the radius of gyration exponent 
(8) on cluster size (N) for the Eden model in two di-  
m e n s i o n s .  
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O~ 

-,5 

-1.0 

-L5 

-2.0 

-2:.5 

-3.0 
0.0 

E ~ S=O 

.5 1.0 1,5 2.0 2.5 30 3.5 4.0 4.5 5.0 5.5 
In(R) 

FIG. 6. Typical density-density correlation functions for two-dimensional clusters grown using the 
Eden (E), Vold-Sutherland (VS), and Witten-Sander (WS) models. The dashed lines indicate the linear 
relationship between In (C(R)) and In (R) at intermediate length scales. 

obtained. This is quite close to the classical 
result (~ = 0.5 for a compact cluster). 

Another way of estimating the Hausdorff 
dimensionality is to use the density-density 
correlation function C(r). The density-den- 
sity correlation function is given by 

p(r')p(r + r')dr' 

C(r) = f p(r)dr' 

= N -1 f p(r')p(r + r')dr' [81 

where p(r) is the density at position r '  and 
p(r + r') is the average density at a distance 
r from r'. For a large cluster with a Hausdorff 
dimensionality of  D, the density-density cor- 
relation function for distances r larger than 

the individual particle size, but considerably 
smaller than the cluster size, has a power law 
dependence on r 

C(r) ~ r -~. [9] 

The density-density correlation function ex- 
ponent a is given by a = d - D where d is 
the Euclidean dimensionality. Typical den- 
sity-density correlation functions obtained 
using the VS, E, and WS models are shown 
in Fig. 6. The results shown in Fig. 6 indicate 
that the density-density correlation function 
exponent (a) is much smaller in the E and 
VS models than in the WS model. For the 
WS model a = 0.322 ___ 0.047 (2). From Fig. 
6, we find that a(VS) ~ 0.08 and a(E) ~ 0.0. 
Since considerably more computer time is 
required to calculate the density-density cor- 
relation function than is required to calculate 

10 

A 
6 

z 
c 4 

. . . . . . .  E 'I,17".,t "~ 

1 2 5 4 5 

tn (L )  

FIG. 7. Dependence of In (N(I)) on In (l) for three typical clusters grown using the E, VS, and WS 
models in two dimensions, 
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Estimates of the Hausdorff Dimensionality (D) for Vold-Sutherland Clusters 
Grown in a Two-Dimensional Space ~ 
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Cluster size 

2500 5000 10,00o 20,000 
(8,0 < l ~< 30.0) (8.0 ~< l < 40.0) (8.0 ~< 1 -<.< 60.0) (8,0 ~< l ~ 80.0) 

Average 

1.945 1.951 - -  - -  

1.931 1.939 1.946 - -  

1.884 1.887 1.917 1.916 

1.880 1.860 1.876 - -  

1.849 1.864 - -  - -  

1.840 1.874 - -  - -  

1.864 1.895 1.922 1.924 

t .877  1.877 1.888 1.899 

1.88 ± 0.04 1.89 __+ 0.03 1.91 ± 0.03 1.91 ± 0.02 

a D is obtained from a least-squares fit of In (N(I)) vs In (l). 

the radius of gyration as a function of the 
number of particles in a cluster and some 
judgment is required in selecting the range 
of length scales over which the density-den- 
sity correlation function exponent is deter- 
mined, we have relied mainly on the radius 
of gyration to obtain the Hausdorff dimen- 
sionality. 

A quantity which was determined by Void 
(2) and Sutherland (3) is the number of par- 
ticles N(I) whose centers are within a distance 
l of the center of gravity of the whole cluster. 

Figure 7 shows the behavior of  In (N(I)) as 
a function of In (I) for the VS, E, and WS 
models. Over intermediate length scales large 
compared to the size of individual particles 
and small compared to the size of the cluster, 
the slope of a plot of In (N(1)) vs In (l) pro- 
vides another estimate of the Hausdorff di- 
mensionality (see Introduction). Using nine 
clusters with an average of 9550 particles per 
cluster, the Hausdorff dimensionality ob- 
tained for the WS model using a two-dimen- 
sional square lattice is D -- 1.707 + 0.022 for 

T A B L E  I V  

Radius of Gyration Exponents (/3) O b t a i n e d  during the Formation of Vold-Suthedand 
Clusters in Three-Dimensional Space a 

Cluster s~e 

1250 2500 5000 10,000 20,000 

Average 

0.3455 0.3175 0.3408 - -  - -  

0.2921 0 .3387 0.3355 0 .3360 - -  

0 .3276 0 .3129 0.3331 0 .3369 0.3401 

0 .3258 0 .3436 0 .3416 0 .3460  

0.3191 0 .3537 0 .3544 - -  - -  

0 .3040 0.3211 0 .3420  0 .3410  0 .3353 

0 .3566 0 .3448 0 .3274  0 .3266  0.3373 

0 .324 ± 0 .020  0.333 ± 0.015 0.339 ± 0.008 0 .337 ± 0.009 0.338 ± 0.006 

a The last 50% of the intermediate clusters arc used to calculate the radius of gyration exponents. 
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I n b I I 

o [ ~  ' ' ~ , , ~ , 
0 I 2 

t n ( t )  

FIG, 8. Dependence of  In (N(I)) on In (l) for eight clusters grown using the WS model of  diffusion- 
limited cluster formation on a three-dimensional cubic lattice. 

10.0 < R < 100.0. This result is in good 
agreement with our earlier results obtained 
from the radius of  gyration (2) (1.73 + 0.06) 
and from the densi ty-densi ty correlation 
function (1.68 + 0.05). For the Eden model, 
the center of  the cluster is compact  and the 
dependence of ln  (N(l)) on In (l) gives a Haus- 
dorff dimensionality of  exactly 2.0. The re- 
sults obtained using the VS model are shown 
in Table IV. The results shown in Table III 
indicate that D = 1.90 ___ 0.03 for the VS 
model. 

Similar simulations have been carded out 
in three-dimensional space using the VS and 
WS models. We did not  carry out simula- 
tions using the Eden model since we expect 
that this model will give a compact  cluster 
(d = D = 3.0) as is the case in the two-di- 
mensional simulations: From nine clusters 
(average 7600 particles per cluster) a radius 
of  gyration exponent (/3) o f  0.397 ___ 0.012 
was obtained using the Witten-Sander model. 
This result is in good agreement with our 
earlier simulations (/3 = 0.402 + 0.009) (2). 
The corresponding Hausdorffdimensionali ty 
obtained by this method is D = 1//3 = 2.52 
+ 0.08. The Hausdorff  dimensionality has 
also been obtained from the dependence of  
N(l) on l. The results obtained for eight of  
the dusters are shown in Fig. 8. For  5.0 
~< 1 ~< 20.0, an estimate of  the Hausdorff  
dimensionality (D = 2.43 + 0.04) is obtained. 
For 5.0 ~< 1 ~< 15, we find D = 2.46 _ 0.04. 

Several large dusters (up to 20,000 parti- 

des  per cluster) were grown using the VS 
model in three-dimensional space. A typical 
cluster of  5000 particles is shown in Fig. 9. 
The Hausdorffdimensionality associated with 
these clusters has been obtained from both 
the dependence of  the radius of  gyration on 
cluster size and the number  of  particles N(I) 
whose centers are within a distance l of  the 
center of  mass. Values for the radius of  gy- 
ration exponents (/3) obtained from the last 
50% of  the intermediate dusters generated 
during the production of  our dusters are 
shown in Table IV. Estimates of  the Haus- 
dorff dimensionality obtained from the de- 
pendence of  In (N(I)) on In (I) are given in 
Table V. 

DISCUSSION 

In this paper, we compare the properties 
of  clusters grown in two and three dimen- 

45 PARTICLE DIAMETERS 

FIG. 9. A cluster of  5000 particles grown in three di- 
mensions using the Vold-Sutherland model. 
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TABLE V 

Estimates of  the Hausdortf  Dimensionality (D) for Vold-Sutherland Clusters Grown 
in a Three-Dimensional Space Using the Dependence of  In (N(I)) on In (l) 
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Ouster size 

2500 5000 10,000 20,000 
(3.0 ~< l ~< 9.0) (3.0 ~< l ~< 12) (5.0 ~< 1 ~< 15.0) (5.0 ~< l ~< 20) 

Average 

2.619 2.705 - -  u 
2.848 2.862 2.764 - -  
2.600 2.649 2.772 - -  
2.740 2.754 2.730 2.788 
2.745 2.743 - -  - -  
2.667 2.737 2.799 2.806 
2.605 2.655 2.709 2.737 

2.69 _+ 0.09 2.73 + 0.07 2.75 + 0.04 2.78 + 0.09 

sions using the Eden, Vold-Sutherland,  and 
Wit ten-Sander  models. Eden clusters grown 
on two-dimensional lattices rapidly develop 
a central region which becomes completely 
dense and occupies a larger and larger frac- 
tion of  the total cluster as the cluster grows. 
This observation indicates that for this model 
we have D = d = 2. This conclusion is con- 
firmed by our  numerical studies which in- 
dicate that D ~ 2.003 _ 0.003 from the de- 
pendence of  the radius o f  gyration on the 
number  of  particles in the cluster, D ~ 2.0 
from the density-density correlation func- 
tion, and D = 2.0 (almost exactly) from the 
dependence of  N(l) on L In two-dimensional 
simulations, we find that the Vold-Suther-  
land model gives a Hausdorffdimensionali ty 
of  about 1.95 from the dependence o f ln  (Re) 
on In (N) and 1.90-1.95 from the densi ty-  
density correlation function. The depen- 
dence of  In (N(I)) on In (l) gives D ~ 1.90. 
All of  these results taken together indicate 
that d - D is small but finite, i.e., d - D 

0.05-0.1. It should be noted that our  re- 
sults have at most a very small dependence 
on cluster size over the range 2500-20,000 
particles per cluster. However, we cannot  
exclude the possibility that very much larger 
clusters would give estimates for the Haus- 
dorff  dimensionality closer to the Euclidean 
dimensionality. It is clear that this question 

will not be easily resolved by further com- 
puter simulations. 

In three dimensions, we find D ~ 2.97 
_+ 0.08 for the VS model using the depen- 
dence of  the radius of  gyration on the num-  
ber of  particles in the cluster. From the de- 
pendence of  N(I) on (l), a value of  2.75 
+ 0.04 is obtained for clusters of  10,000 par- 
titles. In this case, the radius of  gyration gives 
results which seem to be almost independent 
of  cluster size (N) over the range 2500 < N 
< 25,000. Our estimates for D obtained from 
the dependence of N(I) on l increase (slowly) 
with increasing cluster size. Taken together, 
these results indicate that in the limit N 

a value close to 3.0 would probably be 
obtained. Consequently, in both two and 
three dimensions, we conclude that the VS 
model gives clusters with a Hausdorff  di- 
mensionality close to the Euclidean dimen- 
sionality and that the possibility that D = d 
(d = 2, 3) cannot  be excluded. 

In contrast, the Wit ten-Sander  model  
gives estimates for the Hausdorff  dimen- 
sionality which are clearly smaller than the 
Euclidean dimensionality (D ~ 1.70 for d 
= 2 and D ~ 2.50 for d = 3). It should also 
be noted that the estimates for D obtained 
using different methods differ by amounts  
which are considerably larger than their as- 
sociated statistical uncertainties. This is not 
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surpris ing,  b u t  i t  does  i l lus t ra te  the  uncer -  
ta in t ies  assoc ia ted  with  the  use o f  n u m e r i c a l  
s imula t ions  to  ob t a in  the  H a u s d o r f f  d i m e n -  
s ional i ty  o f  s t ructures  such as the  d u s t e r s  
s imu la t ed  in  th is  paper .  I t  is p r o b a b l e  tha t  
different  m e t h o d s  for  ob t a in ing  the  H a u s -  
dor f f  d i m e n s i o n a l i t y  a p p r o a c h  the  N -~  oo 
l imi t  in  different  ways  as the  d u s t e r  sizes in-  
crease. 
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