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Different from the ideal chain description, the persistent chain model is
not only able to deal with short chains, but also addresses the effect of tem-
perature. Another model, which will introduced as the Tsing chain’ in the
next section, accomplishes these tasks in an even more detailed, rather per-
fect manner.

2.5 The Ising Chain

A discussion of the properties of a polymer chain only on the basis of the
global scaling laws or with the aid of Eqs. (2.125) and (2.138) would be in-
complete. The description of specific properties of a given polymer molecule,
as for example its internal energy or entropy, requires a different approach.
For this purpose, one needs a treatment that takes the energetics of the chain
into account. As was explained at the beginning of this chapter, chain confor-
mations may be described microscopically in terms of the accessible rotational
isomaric states. Now We slhiall see tliat this Tepreseritation of & polymer corTe-
sponds exactly to the one-dimensional Ising model, also known as the Ising
chain, which is an important concept in general statistical mechanics. As the
tools for the treatment of Ising chains are well-known, Birshtein and Ptitsyn,
and Flory adapted the Ising model to the polymer problem. This adaption
addressed in the literature as the rotational isomeric state (RIS) model,
-—opens-a-straightforward-way- to calculate the thermodynamic functions and
the specific structural properties of a given polymer chain.

The general Ising chain is set up by an array of interacting particles, with
each particle being able to change between a certain number of different states.
In the simplest case, interactions are restricted to adjacent pairs. Then the
total energy of the chain equals the sum of the interaction energies between
neighbors and for n particles is given by

T

w= Zu(%—l,%) . (2.139)

=2

Here ¢; denotes the state of particle ¢ and u(w;_1, ;) is the pair interaction
GLETEY.

The relation to a polymer chain becomes clear when, one considers that
the energy of one conformational state is a function of the rotational isomeric
states of all Nj, backbone bonds. The latter correspond to the ‘particles’ of
the Ising chain. Conditions would be trivial if all bonds were energetically
independent, since then the chain energy would be equal to V), fimes the
mean energy of a single bond. In reality, however, adjacent bonds may well
affact eachi other. This is nicely exemplified by polyethylene, where the ‘pen-
tane effect’, indicated in Fig. 2.22, becomes effective. The depicted conforma-
tion represents the sequence gauche®-gauche™, and pentane is the shortest
n-alkane, for which this sequence may be built up. As we see, a sharp fold
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Fig. 2.22. The conformation of pentane associated with a sequence w2 = ganche™,
®a = gauche™, A sharp fold with elevated energy is formed

is formed, and it is clear that this requires more energy than is necessary to
form two independent gauche-states. Since the Ising model deals with erlergies
depending on the states of both partners in a pair, it can take this situation
into account, '
The main task in the computation of thermodynamic functions is the
calculation of the partition function, denoted Z. In our case, its hasic form
can be formulated directly, as e

_ _ufwi}
Z = }exp T (2'.140)

{w:

The summation includes all conformational states, here shortly designated
by {¢:}, each state being determined by specifying the conformations of all
honds -

{ed = (01,00, 0m,) .

The energy for each conformations] state of the chain follows from Eq. (2.139).
Knowing the partition function, we can ernploy general laws of thermody-
hamics in order to deduce the free energy per polymer chain, using

fo=—kThZ, (2.141)

the entropy per chain, by

5 = —% , (2.149)

and the internal energy per polymer, hy
ep=Jp+Tsp. - (2.143)

The partition function Z can be evaluated in straightforward manner. We
write : - '
Ny

u(i1, %))

EIC

P, -1

=2

e Ny . . :
R :%:... Z Hexp (_ﬁu(%—lv%)) , (2.144)

PNy —1 =2
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or, introducing the statistical weights

(i1, ;) = exp (‘"E:‘L‘fu(‘{’i—l, %)) o (2145)

Ny,

2= Y [[tere. (2:146)
wa PN, —1 1=2

To explain further, let us select polyethylene as an example. Here, for

the three states per bond, nine different values ¢;; exist. We collect them in

a matrix T
1 wo Wy

T=1[1 w ww | . {2.147)

1 Wiy Wo
Thereby we attribute to the different rotational isomeric states the following
indices

trans =1, gauchet =2, gauche™ =3 .

The matrix includes two parameters, denoted wp and wi. To understand the
matrix structure, imagine that a specific conformation is formed by subse-
guently arranging all honds, emanating from the lowest energy state all-trans.
‘We start at i = 2 and then proceed up to the end, i = N, — 1 (the step to

the last 'bond, i = N}, can be omitted, since for this bond without a further
neighbor no energy contribution arises). The coefficients of the matrix give
the statistical weights associated with each step:

1. Since no energy is required if the trans-state is maintained, we have
u(i,1)=0»—+ti1=1.

2. Formation of a gauche™-state after a trans- or gauche™-state requires an
energy Auy and thus carries a siatistical weight

wy = exp —Augg /KT < 1. (2.148)

3. Increased energies of formation are associated with the ‘hairpin-bend’-
conformations gauche®-gauche™ and gauche™-gauche™, resulting in low-
ered statistical weights, as expressed by the product wywg with

wyp < 1.

The evaluation of the partition function
Z = Zﬁ(ﬁf’h@z) . Zt(‘ﬁzg p3) -+ Z tH{P N, —3; PNy -2
wa 3 PN, -2

. Z t(QDNb-—Z: @Nb—l)t((PNb—l‘J (Pt)

PN,—1
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can be rationalized using matrix multiplication rules. We can repeatedly apply
the general summation rule

I > tutiy = (T2)y; e —(2:150)
I [4

" ‘ for successive reductions:
|

o Z=) Honw) > (2, 08) > Hpny—s, rp—2) - (T%) v, 2,000
2 w3

L PNy 2
‘ | = Zt(ﬁat: a) - Z t(e02, ‘P3) T Z t(on, ~4, DN, -3) * (TS)QDNb—s,fpt
: ‘| w2 w3 @y, -3
o
= (T%); . (2.151)

Hence, Z can be obtained by caleulating the power (N, —2) of T and extract-

ing the 11-coefficient. The task of caleulating the power (N, — 2) of T can
e be-much-simplified 3T s fitst fransformed into a diagonal form. This can be
i achieved as usual by solving the set of homogeneous linear equations

Jh ' S TiAy =My, | (2.152)
| ‘ i :

‘ Le., evaluating the determinant

" IT—A1l=0. (2.153)
. There are three eigenvalues, Az, A2 and Ag, and they set up a diagonal ma-

trix A. The matrix A that transforms T into A
A=A"TTA ' (2.154)

is composed of the three eigenvectors, (A1,7), (A2,5), (43 ;). With the aid of
T A, the matrix multiplication becomes very simple

TNb_2 — (AAA_EI)NI,—Z
=AAATTAAATL...AAAL
= AAM—2A T o (2.155)

We employ this equation and obtain an explicit expression for the partition
function Z

Z = A (A7) A7k A (A D) A2 Az(A™ a1 A7 . (2.156)

[ O S




2.5 The Ising Chain 63

Usually all three cigenvalues are different and one, 5&y A1, is the largest
AL > Mg, Ag . o
Since Ny, is huge, the partition function is well approximated by
Z /A (AT a2 (2.157)
The free energy then follows as

fo=—kT((Ny—2)InX; +1n (An A7) . (2.158)

For a polymer, where N, > 1, we can ignore the constant second term. This
leads us to a simple expression for the free energy per bond

o
<P o= _pPIn ), . .
N = —kTInh (2.159)

... The entrony and the internal energy per bond-follow-ag - - - -

Sp kT 8)\1
—=klnA + ——— 2.16
Ny RNt TG (2.160)
and ;
€p 2 Sp :
— = =47 2.161
- W n TR, (2161
As we can see, in the framework of the RIS model it is a simple matter of
deriving the thermodynamic functions for a given polymer chain, the only
requirement being a knowledge of the maftrix T of the statistical weights.
Let us carry out the calculation for polyethylene. The determinant equa-
il g 4 7 | tion to be solved is

1-2X U Wop
1 wo—X wow | =0. (2.162)
1 Wpuh Wy — A

This is a third order equation, but an evaluation shows that it factorizes,
having the form

(wo — A —wown )[A* — Awe + wowy + 1) + wolw; = 1)] =0. {2.163)

Therefore, the solutions can be given analytically. The three eigenvalues are

1
Aijg = 5 [(wg + wow; + 1) :I:_\/('wg +wgwy + 1)2 + 4w (1 — wl)]
)\3 = Wy (1 - ’LU]_) . (2164)

As is obvious, the largest eigenvalue is );.

It is instructive to consider the numerical results for polyethylene in a com-
putation for its melting point, Ty = 415 K. For the energy required to form
a gauche-state after a trans-state we choose the value Adity = 2kJmol ™ (see
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Sect. 2.1) and obtain wy = 0.56. The second statistical weight that is needed,
the product wow:, has so far not, been experimentally determined. Estimates
for the related energy of the hairpin-bend states have been obtained by po-
tential energy caleulations, using empirical expressions for thenon-bonded
interaction energies. Values in the range of 7kimol™! are thus indicated,
corresponding to a statistical weight wow; = 0.13. With these values the fol-

lowing results are obtained for the thermodynamic functions, expressed per
mol of CHy-units:

= NLfo /Ny = - 2.28kTmol !
= Npsp/Ny, =825 J K~ mol~! |
= Nrep/N, = 1.14 kI mol~? .

It is interesting to comp
the entropy of fusion

[0 BV L‘hz

are these results with the measured heat of fusion and

Ahg = 4.10kI mol™?
Aft = ARL /T = 9.9 7K1 mol~1

is muck larger than can
conformational energy,

We notice that the experimental heat of fusion, Afy,
be accounted for by the change in the intramolecular
as given by &. Hence, the major part of the heat of fusion seems to be related
to a change in the intermolecular energy, i.e., to the increase in the specific
volume (which amounts to 15%). With regard to the change in entropy, the

only the smaller rest being due t

In Sect. 2.1 we carried out 2 first estimate of the fraction of trans-states
and gauche-states in polyethylene. In this estimate, independence of th
i ric states of different bonds was implicitly assumed. We no
check for the modification introduced by the pentane effect, because th
mode] also provides us with equations for the fractions of the differe
of conformational states. We rewrite the partitior function

e rota-
W Inay
e Ising
nt pairs

7 =

W1, 02) . ton, -2, on,)
{'Pi} .

and choose a special form that collects all conformation
(1, 7). These pairs produce a factor tﬁj
remainder £2(4, 7;1)

s with [ pairs of type
- We extract this factor and denote the

Nb—l
Z= 3 () Q0 530) . (2.165)
=0

The probability for one specific conformation, p{p:}, is given by

p{(pz} — exp(—u{Zgo,;}/kT) ) (2166)
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We first derive the probability p(i, j;1) that [ pairs of type (4, j) occur in the
chain. The necessary summation over the corresponding states of the chain is
already implied in our formulation, and we can write

0204, 5,1
(i, 5;1) = L-(ZM—) : (2.167)

From this result it follows that the average number of pairs (i, ), denoted
{n;}, is given by
Ny—=1 I P
t"‘Q(Z:J:” s
N = E [ 2.168) ¢
( .?) p—s Z ( )

o1, using the above relations, by

_tz'jg_Z__ dlnZ _ 3111)\1

{nyg) = 7ot Oty (Mo — 1) I (2.169)

The probability for a sequence (¢, 7) in adjacent bonds, denoted ¢;;, is

(ng) _ Olnx

= = . 2.170
¢> 7 Nb -1 dln tz‘j ( )

Insertion of the statistical weights wq and wowy yields

¢ = 0.29,

" gry = gt = bt = Gug- =0.14
Pgtgt = Pg-g- =0.06,
Potg- = g+ = 0.015.

The pentane effect shows up quite clearly, as the fraction of pairs with se-
quences gaucheT-gauche™ and gauche™-gauche™ is rather low.

Finally, the fractions of trans- and gauche-conformational states in the
polyethylene chains are obtained by

¢ = Z@.j . (2.171)
J .

resulting in

&, = 0.60,
e+ = - = 0.20 .

As expected, compared to the estimate based on the assumption of indepen-
dent rotational isomeric states, the fraction of trans-states is increased.
“The RIS Tiodel also enables a computation of the characteristic ratio Cyo
to be made, if the stereochemical properties of the chain are included into
the considerations. The calculations are more tedious but, using the algebraic




i properties of matrices, they can still be carried out in straightforward manner,
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As it turns out, the experimental value for polyethylene, Cy, = 6.7, is repro-
; duced for reasonable assumptions about the molecular parameters, nemely :
| a C~C-C valence angle of 112° and gauche-rotational angles—pe+ =-127.5° *

| and - = 232.5°.

One may even advance one step further and calculate structure factors
of specific chains numerically, for a comparison with the results of scattering
experiments. Figure 2.23 presents, as an example, neutron scattering data of
polycarbonate obtained for mixtures of deuterated and protonated species. ‘
The experiment covers a large range of ¢’s, and results are represented in the ;
P form of a Kratky plot.

‘ We observe a plateau, characteristic for ideal chains, and then a rise at
qo higher ¢s, for distances shorter than the persistence length where the micro-
| scopic chain structure takes over control. The peculiar shape of the curve in
this range reflects specific properties of polycarbonate and indeed, these can
be reproduced by calculations on the basis of the RIS model. The continu-
| ous curve represents the theoretical results, and even if the agreement is not
| perfect, it describes the main characteristics qualitatively correctly.
p oo e —— -Galeulations based-onrthe RIS Tiodel Tiow axist for the majority of commeon
polymers, thus providing a quantitative representation of the energetic and

¥ structural properties of single macromolecules. The prerequisite is a knowledge
iy about the energies u{yp;_1, @;) associated with the different pairs of confor-
N mational states. Information about these values has improved steadily with
_ the number of carefully analyzed experiments. Clearly, the model does not
—account_for the-excluded volume Interaction, but it provides a microscopic

understanding for all situations with ideal chain behavior.
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Fig. 2.23. Neutron scattering experiment on mixtures of PC and d-PC. The contin- .

- BOUS_curtie. as been calculated on the basis of the RIS model. Data from Gawrisch
at al. [8]
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