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4.4 Block Copolymer Phases 151

Fig. 4.26. Macroscopic domains in a two-phase PS/PBr;S5-(1:1) mixture, formed
after 2h of annealing [21]

The curves in Fig. 4.25 are in agreement with this law, which can therefore
be employed for a determination of Q1. The time dependence of Oy is given

in the lower half of Fig. 4.25. Results indicate a decresse of G5 inverse to t,
O x t71. , (4.121)

Here, we cannot discuss the theories developed for the late stage kinetics,

but the physical background must be mentioned, gince it is basically different

— ...from. the initial stages discussed above. Whereas the kinetics in the initial
stages is based on diffusive processes only, the late stages are controlled by
convective flow. The driving force originates from the excess free energy of the
interfaces. The natural tendency is a reduction of O;9 and this is achieved by
& merging of smaller domains into larger ones.

The latter mechanism remains effective up to the end; however, the strue-
ture characteristics must finally change as the similarity property cannot be
maintained. The very end is a macroscopic phase separation, as shown, for
example, in Fig. 4.26 and clearly, the final structure is always of the same type
independent of whether phase separation has started by spinodal decomposi-

“tion or by nucleation and growth.

4.4 Block Copolymer Phases

If two different polymeric species are coupled together by chemical links, one
obtains block copolymers. These materials possess peculiar properties and we
will consider them in this section.

In the discussion-of the behavior of binary polymer mixtures, we learned
that, in the majority of cases, they separate into two phases. As the linkages
in block copeolymers inhibit such a macroscopic phase separation, one may
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Fig. 4.27. Diflerent classes of microphase separated structures in block copolymers,
as exemplified by PS-block-PIL. The numbers give the phase boundaries in terms of
the volume fraction of the PS blocks. Figure taken from a review article by Bates
and Frederickson [29]

wonder how these systems react under comparable conditions. Figure 4.27
gives the answer with a drawing: The A’s and B’s still segregate but the
domains have only mesoscopic dimensions corresponding to the sizes of the
single blacks. In addition, as all domains have a uniform size, they can be
arranged in regular manner. As a result ordered mesoscopic lattices emerge.
In the figure it is also indicated that this microphase separation leads to
different classes of structures in dependence on the ratio between the degrees
of polymerization of the A’s and B’s. For Nx <« Np spherical inclusions of
A in a B-matrix are formed and they set up a body-centered cubic lattice.
For larger values Ny, but still Ny < Ng, the A-domains have a cylindrical
shape and are arranged in a hexagonal lattice. Layered lattices form under

" essentially symmetrical conditions, i.e., No = Ng. Then, for Ny > Ng, the

phases are inverted and the A-blocks now constitute the matrix.

In addition to these lattices composed of spheres, cylinders and layers,
periodic structures occur under special conditions where both phases are con-
tinuous and interpenetrate each other. These bicontinugus gyroid structures
exist only in a narrow range of values N /Np, between the regimes of the
cylindrical and lamellar structures and, as it appears, only when the repul-
sion forces between the A’s and the B’s are not too strong. To be sure, the
figure depicts the structures observed for polystyrene-block-polyisoprene, but
these are quite typical. Spherical, eylindrical and layer-like domains are gen-
erally observed in all block copolymers. Less is known about how general the
bicontinuous special types like the gyroid lattices are.

The majority of synthesized compounds are di-block copolymers com-
posed of one A-chain and one B-chain; however, tri-blocks and multiblocks,
comprising an arbitrary number of A-chains and B-chains, can be prepared
as well. One can also proceed one step further and build up multiblocks that
incorporate more than two species, thus again increasing the variability. The
question may arise as to whether all these modifications result in novel struc-
tures. In fact, this is not the case. The findings give the impression that at
least all block copolyiiiers composed of two specics exmibit qualitatively sim-
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Fig. 4.28. SAXS curves measured for a series of PS-block-PI with different molar
masses in the microphase separated state: (a) M = 2.1 x10* gmol ™", ¢(PS} = 0.53;
(b) M = 3.1 x 10* gmol™?, ¢(PS) = 0.40; (c) M = 4.9 x10*gmol™*, ¢(PS) =
0.45 (left). Transmission electron micrographs obtained using ultra-thin sections of
specimen stained with OsOs (right). Structures belong to the layer regime. Data
from Hashimoto et al. [30]

ilar phase behaviors. Changes then occur for ternary systems. For the latter,
the observed structures still possess periodic orders, but the lattices are more
complex. Here, we shall only be concerned with the simplest systems, the
di-block copolymers.

Suitable methods for an analysis of block copolymer structures are electron
microscopy and small angle X-ray scattering {(SAXS) experiments. Figure 4.28
gives an example and on the left-hand side presents scattering curves obtained
for a series of polystyrene-block-polyisoprenes where both blocks had similar
molar mass. Structures belong to the layer regime and one correspondingly
observes series of equidistant Bragg reflections. The right-hand side depicts
micrographs obtained-for-the-same-samples-in-an-electron-microseepe using
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154 4 Polymer Blends and Block Copolymers

ultra~thin sections of specimens where the polyisoprene blocks were stained
with OsQy4. The layered structure is clearly visible and one notices an increase
of the layer thicknesses witk the molar masses of the blocks.

In binary polymer mixtures, under favorable conditions one finds homo-
geneous phases. They either arise if the forces between unlike monomers are
attractive or, generally, if the molar masses are sufficiently low. Block copoly-
mers behave similarly and can also have a homogeneous phase. It actually has
a larger stability range than the corresponding binary mixture. Recall that for
a symmetric mixture (Nas = Ng) the two-phase region begins at (Eq. {4.33))

(XNA)C =2.

If a symmetric di-block copolymer is formed from the same A- and B-chains,
the transition between the homogeneous phase and the microphase separated
state takes place at a higher y, namely for

(xVa)e 5. (4.122)

The complete phase diagram of a block copolymer is digplayed in Fig. 4.29 in
a schematic representation. Variables are the volume fraction of the A-blocks
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Fig. 4.29. Phase diagram of a di-block copolymer in a schematic representation.
The curve describes the points of transition between the homogeneous phase and
the microphase separated states. The ordered states are split into different classes

of higher values of ¥ Nap away from the phase transition line
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and the product ¥xNap, where Nap describes the total degree of polymeriza-
tion
Nap=Np+Np.

The transition line separating the homogeneous phase from fhe various mi-
crophase separated structures has an appearance similar to the binodal of
a polymer mixture. There is, however, a basic difference: In the block copoly-
mer case, we are dealing with a one component system rather than a binary
mixture. The line therefore relates to a phase transition rather than to a mis-
cibility gap. It should also be noted thag, in contrast to the binodal of a mix-
ture, the transition line tells us nothing about the internal composition of the
microphases. In principle, these could be mixed states; however, with the ex-
ception of situations near the transition line, compositions are mostly close to
pure A- or B-states. The schematic drawing indicates only the structures aris-
ing under the conditions of a strong segregation, xNag > 10, where solely
lattices of spheres, cylinders and layers are found. The situation for a weak
segregation with yNap just above the critical value is more complicated.
Here, also the bicontinuous structures are found and subtle features decide

a3 theis-shability relative-to-the-three major forms.

4.4.1 Layered Structures -

Each of the ordered structures represents under the respective conditions the
state with the lowest Gibbs free energy. Calculations of the Gibbs free energies

~atid Gornparisons between the various lattices and the homogeneous phase can

therefore provide an understanding of the phase diagram. In addition, they
make it possible to determine the structure parameters.

Theoretical analyses were carried out by Meier and Helfand. A full presen-
tation lies outside our possibilities but in order to gain at least an impression
of the approaches, we will pick out the layered structures as an example and
discuss the equilibrium conditions. The main result will be a power law that
formulates the dependence of the layer thicknesses on the degree of polymer-
ization of the blocks.

If we think about the structural changes that accompany a transition from

" the homogeneous phase to an ordered layer structure, we find three contribu-

tions to the change in the Gibbs free energy
Agp = Al — TAsp 1t — TASpcons (4.124)

There is a change in enthalpy, a change in entropy following from the arrange-
ment of the junction points along the interfaces and another change in entropy
resulting from altered chain conformations. We write the equation in terms of
quantities referring to one di-block polymer.

the usual case of unfavorable AB-interactions, i.e., x > 0, there is a gain

-




156 4 Polymer Blends and Block Copolymers

in enthalpy on unmixing. We assume a maximum gain, achieved when we
have a random distribution of the monomers in the homogeneous phase and
a perfect segregation in the lamellsr phase. Then the enthalpy change per
polymer, Ahy, is given by

Ahy = —kTyNapga(l — da) + Ahp e o (4125)

The first term follows directly from Eq. (4.24). The second term, Ahy iz, ac-
counts for an excess enthalpy that is contributed by the interfaces. To see the
background, bear in mind that interfaces always possess a finite thickness,
typically in the order of one to several nm. Within this transition layer the
A’s and B’s remain mixed, which leads to an increase in enthalpy proportional
to x and to the number of structure units in the transition layer. Let the thick-
ness of the transition layer be d; and the interface area per polymer op, then

we may write
Al s ~ KTy 2% (4.126)

Ve

Te a.galn is the volume of the structure unit, com.monly chosen for both the

-}!-;———~—A-~a.nd—B~cha1ns—-f** S e e e
The two entropic parts both work in the opposite direction. There is first

the loss in entropy, which results from the confinement of the junction points,
being localized in the transition layer. For a layered phase with layer thick-
nesses da and dg, and therefore a period

dag =da +dB, (4.127)

Asy s may be estimated using a standard equation of statistical thermody-
namics
4,

da +dp
The second entropic contribution, Asp con, accounts for a decrease in entr opy,
which follows from a change in the chain conformations. The Gaussian confor-
mational distribution found in the homogeneous phase cannot be maintained
in the microphase separated state. Formation of a layer structure leads, for
steric reasons, necessarily to a chain stretching, which in turn results in a loss
in entropy. For a qualitative description we employ the previous Eq. (2.93),

Aspir = kin (4.128)

R\ 2
ASpeont = —F (—) : (4.129)
Ry

where R and Ry are now the end-to-end distances of the block copolymer in
the layered and the homogeneous phase, respectively. Assuming that chain
sizes and layer spacings are linearly related, by

R=dzs; (4.130)
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the equation converts into

2
Asp,wnf —k? (dJ‘;B) : (4.131)
0

We can now search for the equilibrium. First note that op and dap are
related by the obvious equation

opdaB = NaBUc (4.132)

We therefore have only one independent variable, for example op,. Using all
the above expressions, we obtain for the change in the Gibbs free enthalpy

1 ds dap 2
ﬁAgp = —XNABlibA(l — ¢A) +xopdt'u +In— dan +ﬁ2 ( B ) . (4.133)

If we neglect the slowly varying logarithmic term, we obtain for the derivative

1 dAgp _ 2NABU 1
BT dop v _ ﬁ 2 0_% 3 {(4.134)
The equilibrium value of o, follows as
o 2—”51_N§B . | (4.135)
P Rgdtx )
S R? w2/ Nag (4.136)
we find o /s
03 oc ——Naz . (4.137)
dex
Replacement of o, by dap gives us the searcheéj—for result
Nigu?
dip = %- o xdw2PNZ5 . (4.138)

P

How does this result compare with experiments? Figure 4.30 depicts the data
obtained for the samples of Fig. 4.28. Indeed, the agreement is perfect. The
slope of the line in the double logarithmic plot exactly equals the predicted
exponent 2/3.

4.4.2 Pretransitional Phenomena

A characteristic property of polymer mixtures in the homogeneous phase is
the increase of the concentration fluctusations associated with an approaching
of the point of unmixing. A similar behavior is found for the homogeneous
phase of block copolymers and a first example is given in Fig, 4.31. The figure
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Fig. 4.30. Set of samples of Fig. 4.28. Molecular weight dependence of the layer
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i “' ; Fig. 4.31. SAXS curves measured for a polystyrene-block-polyisoprene (M = 1.64x
| 10* gmol™", ¢(PS) = 0.22) in the homogeneous phase. The dotted line on the base

indicates the temperature dependence of the peak position [31]

i shows scattering functions measured for a PS-block-PI under variation of the

‘ temperature, The temperature of the transition to the microphase separated

‘ state is located around 85 °C, just outside the temperature range of the plot.
| The curves exhibit a peak, with an intensity that strongly increases when the

temperature moves towards the transition point.

| i The feature in common with the polymer mixtures is the intensity in-

' crease; however, we can also see & characteristic difference: The maximum of
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the scattering intensity and the largest increase are now found for a finite
scattering vector gmax, rather than at g = 0. As scattering curves display
the squared amplitudes of wave-like concentration fluctuations, the observa-
tion tells us that concemfration Auctuations with wavevectors in the range
|E| & Gumax are always large compared to all the others and show a partic-
ularly strong incresse on approaching the phase transition. What do these
observations mean? Clearly, they remind us of the pretransitional phenom-
ena observed for second order phase transitions. There, the approach of the
transition point is always associated with an unusuval increase of certain flue-
tuations. Hence as it appears, one also finds properties in the homogeneous
phase that have much in commeon with the behavior of critical systems, not
only for polymer mixtures, but also for block copolymers.

The general shape of the scattering curve, showing a maximum at some
Gmax 80nd going to zero for ¢ — 0 is conceivable. As explained in Sect. A.3.2
of the Appendix, the forward scattering, §{¢ — 0), always relates to the fluc-
tuation of the number of particles in a fixed macroscopic volume. In our case,
this refers to both the A’s and the B’s. The strict coupling between A- and
B-chains in the block copolymers completely suppresses number fluctuations

o —bn-lengtlh-seales-that-are large compared to the size of the block copolymer.

The limiting behavior of the scattering function, S{g — 0) — 0, reflects just
this fact. On the other hand, for large ¢'s, scattering of a block copolymer
and of the corresponding polymer mixture composed of the decoupled blocks,
must be identical because here only the internal correlations within the A-
and B-chains are of importance. As a consequence, asymptotically the scat-
_tering law of ideal chains, S{g) « 1/ g°, shows up again. Hence, one expects
an increase in the scattering intensity coming down from large ¢’s and when
emanating from g = 0 as well, Both increases together produce a peak, located
at a certain finite gmax.

The increase of the intensity with decreasing temperature reflects a grow-
ing tendency for associations of the junction points accompanied by some
short-ranged segregation. As long as this tendency is not too strong, this
could possibly occur without affecting the chain conformations, i.e., chains
cowld still maintain Gaussian properties. If one adopts this view, then the
scattering function can be calculated explicitly. Leibler and others derived
the following expression for the scattering function per structure unit Se:-

1 _ 1
5@ S X

with $2(q), the scattering function in the athermal case, given by
53(a)NaSo (R3q”) = 6(1 — ¢)NaNeSp (R34”) Sp (REd”)
1
~1 [NapSp (R3¢%) — $NaSp (Rid®)

S(T= /NS5 (R (4.140)

(4.139)

1
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RZ denotes the mean squared end-to-end distance of the block copolymer,

given by
R2=R3+RL. (4.141)

With regard to the effect of x; Egr (4:139) sequivalent to Eq. (4.91). Indeed,
the physical background of both equations is similar and they are obtained
in an equal manner by an application of the random phase approximation
(RPA). The interested reader can find the derivation in Sect. A.4.1 in the
Appendix.

Importantly, Eq. (4.139) describes the effect of  directly. It becomes very
clear if one plots the inverse scattering function. Then changes in ¥ result
in parallel shifts of the curves only. Figure 4.32 depicts the results of model
calculations for a block copolymer with a volume fraction of polystyrene blocks
of ¢ = 0.22, in correspandence to the sample of Fig. 4.31. The curves were
obtained for the indicated values of the product xNag.

Obviously the calculations represent the main features correctly: They
yield a peak at a certain gmax, which grows in intensity with increasing x, i.e.,
with decreasing temperature. The important result comes up for xNag = 21.4.
For this value we find a diverging intemsity at the position of the peak,
S(gmax) — co. This is exactly the signature of a critical point. We thus real-
ize that the RPA equation formulates a critical transition with a continuous
passage from the homogeneous to the ordered phase. When dealing with crit-
ical phenomena, it is always important to see the order parameter. Here it is

70

80 |— *

0 2 4 8 8 10 12 14 16
q?R2/6

Fig. 4.32. Theoretical scaitering functions of a block copolymer with ¢ = 0.22,
calculated for the indicated values_ol xMNam .
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Fig. 4.33. SAXS curves meagured for a PS-block-PI (¢(PS) = 0.44, M = 1.64 X
10* gmol ™) in the temperature range of the microphase separation. The transition

eectrs-ab-Tr-=-362 K—DPata-from-Stithn-et-al- [32]-

of a peculiar nature. According to the observations it is associated with the
amplitudes of the concentration waves with k| = gmax-

For ¢ = 0.22, the critical point is reached for Napx = 21.4. With the aid
of the RPA result, Eq. (4.140}, one can calculate the critical values for all ¢’s.

" Ti particular, for & symmetric block copolymer one obtains

¥Nag =104 .

This is the lowest possible value and the one mentioned in Eq. {4.122).

In polymer mixtures, one calls the curve of points in the phase diagram,
where S(g = 0) apparently diverges, the spinodal. One can use the same
notion for block copolymers and determine this curve in an equal manner by
a linear extrapolation of scattering data measured in the homogeneous phase.
We again denote this spinodal by T, (¢).

Regarding all these findings, one could speculate that the microphase sep-
aration might take place as a critical phase transition in the strict sense,
at least for block copolymers with the critical composition associated with
the lowest transition temperature. In fact, experiments that pass over the
phase transition show that this is not true and they also point to other lim-
itations of the RPA treatment. Figure 4.33 presents scattering curves ob-
tained for a polystyrene-block-polyisoprene near to the critical composition
(¢(PS) = 0.44) in a temperature run through the transition point. As we
can see, the transition is not continuous up o the end but is associated with
the sudden appearance of two Bragg reflections. Hence, although the glabal
behavior is dominated by the steady growth of the concentration fluctuations
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typical for a critical behavior, finally there is a discontinuous step, which
converts this transition into one of weakly first order.

There exists another weak point in the RPA equation. As a basic assump-
tion, it implies that chains in the homogeneous phase maintain Gaussian sta~

tistical properties up to the transition point. The reality is different and this

is not at all surprising: An increasing tendency for an association of the junc-

tion points also necessarily induces a stretching of chains, for the same. steric
reasons that in the microphase separated state lead to the specific power law
Eq. (4.138). Tkis tendency is shown by the data presented in Fig. 4.33 and,
even more clearly, by the results depicted in Fig. 4.31. In both cases, ¢max
shifts to smaller values with decreasing temperature, as is indicative for chain
stretching.

The details of the transition are interesting. Figure 4.34 depicts the tem-
perature dependence of the inverse peak intensity 7™ (Gmax)-

Equation (4.139) predicts a dependence

5(gumas) ™" o Xsp — X » (4.142)

or, assuming a purely enthalpic x with x oc 1/7" {Eq. (4.22)), _ = _

L4
B e e a EET

i

S(@maxe) o TG =T (4.143)

The findings, however, are different. We can see that the data follow a linear
law only for temperatures further away from the transition point and then
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Fig. 4.34. Measurements shown in Fig. 4.33;: Temperature dependence of the re-

ciprocal peak intensity, showing deviations from the RPA predictions. The linear

extrapolation determines the spinodal temperature
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deviate towards higher values. The transition is retarded and does not take
place until a temperature 35 K below the spinodal point is reached. Accord-
ing to theoretical explanations, which we cannot further elaborate on here,
the phenomenon is due to a lowering of the Gibbs free energy, caused by
the temporary short-range order associated with the fuctuations. The short-
range order implies local segregations and thus a reduction of the number of
AB-contacts, which in turn lowers the Gibbs free energy. We came across this
effect earlier in the discussion of the causes of the energy lowering observed in
computer simulations of low molar mass mixtures. Remember that there the
effect exists only for Jow enough molar masses, since for high molar masses
a short-range ordering becomes impossible. The same prerequisite holds for
block copolymers and this is also formulated by the theories.

The short-range ordering is even more pronounced for asymmetric block-

~ copolymers with ¢a < ¢g, which form in the microphase separated state

10°+
10°

1044

g[nm™]

Fig. 4.35. PS-block-PI (¢(PS) = 0.11}: (a) Scattering curves referring to the homo-
geneously disordered state (T = 458 K), (b) the state of liquid-like order between
spherical domaing (7" = 413 K), and (c) the bec ordered state (T = 318 K). The
continuous lines are fits of structural models for the different states of order. From
Schwab and Stithn [33] ‘

>
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a bee-lattice of spheres. The fluctuation-affected temperature range between
Tsp and T is even larger and the short-range ordering here shows up quite
clearly in the scattering curves. Figure 4.35(Db) presents as an example the scat-
tering curve obtained for polystyrene-block-polyisoprene (¢(PS) = 0.11) at
T = 413K (Ty, = 450K, T} = 393K) in a comparison with scattering curves
measured above Ty, in the homogeneous phase (a) and in the microphase sep-
arated state respectively (¢). Curve (c) shows the Bragg reflections of a bee-
lattice and the data points in (a) are perfectly reproduced by the RPA equa-
tion. Interestingly, the data points in {b) are well-represented by a curve calcu-
lated for the scattering of hard spheres with liquid-like ordering; the continu-
ous line drawn through the data points was obtained using the Perkus—Yevick
theory, which deals with such liguids. Hence, the ordering during cocling of
this block copolymer proceeds in two steps, beginning with the formation of
spherical domains that are then placed at the positions of a lattice. The second
step takes place when the repulsive interaction reaches a critical value.

K. Binder: Spinodal Decornposition in P. Haasen (Ed.): Material Science
and Technology, Vol. 5 Phase Transitions in Materials, VCH Publishers,
1991 ‘ '
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