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A number of theories and models with different degrees of sophistication and 
computational demand are today used to describe the self-assembly of block copolymers in 
solution. The different types of approach are reviewed and numerical examples are given which 
demonstrate the applicability of each one. The focus is on approaches useful for long chain 
molecules in a selective solvent, but illustrations of direct simulations of short-chain molecules 
are also included. 

1. INTRODUCTION 

Block copolymers in the melt and in solution tend to self-assemble and form microphases. 
In the melt and in a nonselective solvent, the repulsive interaction between the monomers on 
different blocks constitutes the driving force for the process. In a selective solvent, the bad 
solvency condition for one type of monomer and the good one for the other type is also of 
importance for the self-assembly. The structure and symmetry of the aggregates formed depend 
on the relative strength of the interactions as well as on the composition and the architecture of 
the block copolymer. The aim of the chapter is to present an overview of different theoretical 
treatments of the self-assembly of block copolymers in a selective solvent. We will cover the 
range from scaling relations obtained from simplified models to computer intensive simulation 
approaches. After the introduction where the scope of the overview is given, each type of 
theory is presented and numerical examples illustrating characteristic results are given. The 
chapter ends with a summary where the main differences of the types of theory are presented. 

The driving force of the self-assembly depends on the particular system. Briefly, 
amphiphilic block copolymers can be divided into nonionic and ionic block copolymers, in both 
groups there exist polymers that are soluble in water and in organic solvents. For the nonionic 
block copolymers, the driving force behind the self-assembly depends on the solvent. In 
aqueous solution it is normally of entropic origin (e.g. PEO-PPO-PEO), whereas in organic 
solvents (e.g. PS-PEO) the enthalpic contributions dominate. Obviously, for block 
polyelectrolytes in aqueous solution and, in particular, for block ionomers in organic solvents, 
the electrostatic interaction between the free charges plays a dominant role for the self-assembly. 

1.1. Scope of the review 
A very important area related to the self-assembly of block copolymers in solution is the 

self-organization of block copolymers in melts. The types of structure appearing, as well as the 
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theoretical approaches, are often similar in the two areas. Despite the recent advances in the 
understanding of block copolymers in melt [ 1 ], space does not allow to treat these systems. 
Similarly, the self-assembly of block copolymers in a nonselective solvent displays the same 
main features as in melts and is hence also treated here superficially. For the same reason, 
theories developed for describing polymeric gels formed by multifunctional block copolymers 
are also excluded. 

Surfactants (short for surface active agents) constitute an important and related class of 
molecules. They are short chain molecules with amphiphilic character, and in solution they self- 
assemble in a manner similar to block copolymers. The driving forces for the self-assembly are 
the same, but some aspects are different due to the different chain lengths. Hence, the 
theoretical descriptions of the self-assembly of surfactants and of block copolymers in solution 
display large similarities, although a number of differences exist. In the following, the scope is 
on models and theories which have been applied to block copolymer systems. Some of them are 
the same as those used for describing surfactant systems, but there exist important theories 
which are only applied to surfactant systems and they are not considered here. However, direct 
simulation of the self-assembly constitutes the main exception. Due to the shorter chain length, 
computer simulations of the self-assembly of surfactant systems are simpler (but still not 
simple), and results pertaining to shorter chains more relevant for surfactant systems will be 
presented to illustrate what can be modelled for longer chains in the near future. Finally, 
although kinetic aspects are in many cases of large significance, we will here restrict ourselves 
to equilibrium systems only. 

1.2. Structures and phases 
The conventional or classical structures occurring in solutions of block copolymers as 

well as in solutions of surfactants are spherical, extended cylindrical, and planar aggregates. At 
low concentration, the spherical aggregates appear as isolated aggregates with no or low spatial 
correlation. At higher concentration liquid crystalline phases, such as closed packed cubic 
phases, hexagonal phases, and lamellar phases, may occur. The two former normally exist in 
two morphologies: a normal one where the solvent constitute the continuous phase and a 
reverse where the solvent is localized in the interior of the aggregates. Besides the classical 
structures, recent research has shown that intermediate structures as the double-diamond and the 
gyroid bicontinuous structures, as well as different perforated lamellae could possibly exist in 
narrow concentration and temperature ranges. 

A large fraction of the theoretical effort has been devoted to describe the onset of forming 
the spherical aggregates, normally referred to as micelles. In particular, the lowest copolymer 
concentration at which micelles exist (the critical micellar concentration, cmc) is of large 
interest, but also the sizes of the micellar core and corona (the latter is also referred to as shell or 
brush height), the concentration of nonassemblied copolymers above the cmc, and the ordered 
phases occurring at high concentrations are of great interest to describe. 

1.3. Types of theory 
The different theories and models are presented in order of increasing computational 

demand. The theories are divided in (i) scaling approaches, (ii) semi-analytic mean-field 
models, (iii) numerical self-consistent mean-field models, and (iv) simulation approaches. The 
above division is of course somewhat arbitrary, and the borders between the subdivisions are 
not sharp. 
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The scaling approach provides us with simple but useful relations of how, e.g., the size 
of the micellar core and corona depends on the number of segments of the different blocks. The 
word segment is used to denote a part of a chain in the model and it has to be mapped on a 
monomer, repetitive unit, or similar, when the theory is applied. In the semi-analytic mean-field 
models, one normally assumes some block profile and from an expression for the free energy 
contributions, the aggregation number, the cmc, and the phase diagram can be extracted. The 
starting point of the numerical self-consistent mean-field models is normally random walks 
which represent the configurations of the chain molecules. These walks are performed in a 
potential field which, as such, depends on the configurations of the molecules. In addition to 
the results of the semi-analytic mean-field models, volume fraction profiles, distribution of 
segments, etc., are obtained. Finally, through direct simulations it is possible to go beyond the 
mean-field approximation, but the computational demand is high for polymeric systems. 

2. SCALING APPROACHES 

The idea behind the scaling "anzats" is to obtain relations which predict how quantities of 
interest depend on other variables without a full knowledge of the dependencies on all variables. 
On the basis of some simple model of the system, the leading free energy contributions are 
formulated. After minimization of the free energy with respect to one or a few variables, the 
leading dependencies of these quantities on the other variables are often readily extracted. 

2.1. Mlcellization of AB-diblock copolymers in a selective solvent 
We will consider first a solution of a monodisperse AB-diblock copolymer in a selective 

solvent of low molecular weight. The number of segments of the copolymer blocks are 
represented by N A and N B, respectively. We will derive the scaling relations of the size and the 
aggregation number of the micelles formed. Two limiting cases will be considered: the large 
core case [2] valid when N A >> N 8 ("crew cut micelles") and the small core case [3,4] for N A 
<< N B ("hairy micelles"). In the former limit the analogy with theories for polymer brushes [2] 
is used, whereas in the latter case the theory is developed from star polymer theory [5,6]. 

The micelles are assumed to be monodisperse and their concentration so low that micelle- 
micelle interaction are negligible. A micelle is modelled as two concentrical spherical regions, 
where the molten lyophobic A-blocks reside in the central core, whereas the B-blocks, swollen 
by the solvent, are located in the shell. The incompatibility between the two types of blocks is 
assumed to be large so the core-shell interface, at which the AB junctions are localized, is 
sharp. In the case of the large core, the volume fraction of B segments is treated as constant in 
the shell (model I) (not always a realistic assumption, but nevertheless made), whereas in the 
case of the small core, the volume fraction of B segments is allowed to decay with increasing 
distance (model II), (see Figure 1). 

Assuming that the core is incompressible and consists only of A segments, i.e, t~  ~ = 1, 
we obtain the scaling relation 

R3 ~" pNAa3 (2.1) 
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Figure 1. Illustration of model I (left) and II (fight) of the AB-diblock copolymer micelle in a 
selective solvent (lower panel) and the volume fraction profiles of the polymer blocks (upper 
panel) applied for the large core case (N A >> N B) and the small core case (N A << NB), 
respectively. 

where p denotes the aggregation number and a the length of a segment. (The symbol ~ denotes 
equal within a numerical factor of order one.) 

For model II, the scaling relation for R B is obtained by analysing the conformations of the 
B-blocks in terms of blobs [7]. With the following assumptions: (i) the shell region consists of 
concentrical shells of blobs, (ii) there are p blobs in each shell, (iii) the blobs size ~ depends 
only on r, and (iv) the B-segments are in a good solvent, the volume fraction of the B segments 
can explicitly be expressed as ~hen ~ p213(ffa)_4/3" By integration of ~h~ hen, the scaling relation 

RB ~ Pl/SNaa/Sa (model II) (2.2') 

is obtained after applying R k << Ra. 
The two dominant contributions to the free energy are assumed to be the inteffacial 

tension (enthalpie) and the chain stretching (entropic). Thus, the total free energy of a micelle is 
approximated according to 

L-core ~shell 
F = Finterfac e + X-de f + Zdef (2.3) 

I~COi'O 
where Finterfac e describes the intoffacial free energy, l-de f the stretching free energy of the A- 



17 

i~sllell blocks, and "def the corresponding quantity for the B-blocks. The interfacial free energy is 
assumed to be proportional to the area of the interface, thus 

Finterface ~ ,~2  (2.4) 

where T is the surface tension. In this simple approach, the A blocks are assumed to be 
uniformly stretched with an end-to-end distance equal to the core radius, R A, (obviously not a 
fully realistic picture) and the accompanied cost is expressed as 

i:o,o ( P-,'I 
�9 def =P N~/2aj (2.5) 

where 13 = l/(kT) with k being Boltzmann's constant and T the temperature. In model I, a 
constant volume fraction of the B block is assumed and the uniformly stretching assumption 
gives similarly 

 o,hel (RB)2 
ldef = p  N'~/2a (model I) (2.6) 

Regarding model H, the blob picture is used again. To the leading order there are =pl/2 blobs 
per chain and with a free energy penalty of kT per blob due to the confinement of the B-blocks 
at the core surface, we get 

l]F~ll ~ p3/2 
(model II) (2.6') 

Substitution of eqs (2.4)-(2.6) in eq (2.3) and elimination of R A and R n by employing 
eqs (2.1)-(2.2) leads to a free energy expression of a single micelle where the aggregation 
number p is the only unknown parameter according to 

13F ~ TNA2/3p2/3a 2 + N~.I/3p5/3(I + NAINBP -2) 

13 F = TN 2/3p2/3a2 + NAI/3p5/3 + p3/2 

(model I) (2.7) 

(model II) (2.7') 

The aggregation number can now determined by minimization of the free energy per polymer 
chain, F/p. For the case of large cores (model I), the following scaling relations are obtained: 

P'~TNA (2.8) 

R A = Tl/3N~3a 
(2.9) 

~core ~shell where N A >> N B has been applied corresponding to "0ef >> "def �9 In the opposite limit with 
small cores (model H), we obtain: 
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p = T6/SN 4/5 
(2.8') 

R A ,~ 'ff5N3A/5a 
(2.9') 

6/25..4125,,.3/5 
R B ' ~ T  ~A ~B a (2.10') 

~core t~shell where (NA'2p) u6 << 1 has been used corresponding to *def << l def �9 
Thus, in the large core limit, the aggregation number is determined from the balance of the 

deformation free energy in the core and the inteffaeial free energy; the former tending to reduce 
p and the latter tending to increase p. Hence, the assumption of constant volume fraction in the 
shell does not affect the scaling relations, at least to the leading order. In the small core limit, the 
limitation of the growth of the micelle is, however, governed by the increased free energy of the 
blocks in the shell instead of in the core. 

2.2. Solubilization in block copolymer micelles 
The self-assembly of the block copolymers creates an environment in the core which is 

different from that in the solution. Solutes not soluble in the solvent can be solubilized 
(dissolved) in the core, and hence the solubility of a solute in a system can significantly be 
enhanced by the presence of block copolymers. 

The blob picture of star polymers [5,6] has been employed by Nagarajan and Ganesh for 
deriving scaling relations where small and lyophobic molecules are solubilized in the rnicellar 
core [8]. Their extension involves the cases where the the lyophobic segments are nonswollen 
or swollen by the solubilizate leading to a radial volume fraction profile in the core according to 
~ore = r-I or r "4/3, respectively. The corresponding incompressibility assumption of the core 
gives 

R3 = PNAa3<~re> (2.11) 

where -core <r > denotes the average volume fraction of A in the core. With the assumption of 
unaffected surface tension due to the solubilization (for simplicity), the following scaling 
relations are obtained: 

P=TNA (2.12) 

R A ~.~ ~14N3/4 a 
(2.13) 

//5-.//5-.3/5 
R B ~- T N A 1'q B a (2.14) 

for ~ore = r.1 and 

P ~ TI0/I INI2/I 1 
(2.15) 

R A ~-~ ~2/11N9/I la 
(2.16) 

RB ~ ~2/11,,. 12/55,,.3/5 
~A I~l B a (2.17) 



19 

for ~ore = r-4/3, both in the limit of R A >> R n. 
Thus, for "hairy" micelles the scaling approach predicts that the solubilization causes the 

aggregation number as well as the core and shell dimensions to depend stronger on N A and 
weaker on 3' than without solubilization. 

2.3. Micel l izat ion of  polyelectrolytes 
An extension of the scaling relations for the small core limit to the case where the B-block 

is charged has been given by Dan and Tirrell [9]. With the assumption that the salt concentration 
is sufficiently high such that the persistence length of the B block is smaller than the blob size, 
the previous blob picture remains. In this regime, the leading terms of p and R A are found to be 
independent of the salt concentration Osalt, whereas the shell thickness scales as 

6125,, .4/2 5,,. 3/5--2/5 
RB ~-" 3' rqA ~B tPsalt a (2.18) 

At low salt concentrations, where the persistence length exceeds the blob size, it is anticipated 
that both p and R A display salt dependence. 

3. SEMI-ANALYTIC MEAN-FIELD MODELS 

The basic idea behind the core-shell models is the assumed physical separation of the two 
different types of blocks of the copolymer into two domains, the core and the shell (corona) of 
the micelle. On the basis of this separation, a free energy expression is constructed which 
represents the free energy of the micelle with respect to some reference state. The final step 
involves a minimization of the free energy with respect to a few parameters characterizing the 
micellar aggregate (as the domain sizes and the micellar volume fraction). In the case of only a 
few free energy terms, the simple scaling relations of the size of the domains are recovered. 

3.1. Micei l ization of AB-diblock copolymers 
The main variation within this class of models lies in the selection of free energy terms 

which describe different aspects of the self-assembly. In an early contribution, de Gennes [2] 
considered three terms: (i) the interfacial energy between the core and the corona, (ii) the 
deformation free energy of the A-block, and (iii) the deformation free energy of the B-block. 
The subsequent extension of Leibler et al. [ 10] included terms describing the mixing entropy of 
the solvent and the lyophobic block, the mixing entropy of miceUes with solvent and non- 
assembled block copolymers, and the free energy of the homogeneous reference solution. Later 
Munch and Gast [ 11 ] extended the same theory to copolymer with different block sizes, and 
they also investigated the phase equilibrium between micelles and lamellar phases. 
Independently of Leibler et al., Noolandi and coworkers [12,13] developed very similar 
theories utilizing slightly different free energy expressions and obtained essentially the same 
results. In particular, they used a more elaborate model for obtaining the interfacial free energy, 
and they also included a term representing the free energy penalty of confining the A-B 
junctions. 
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In order to illustrate the principles of the core-shell model in more detail, the approach by 
Leibler et al. [ 10] and later used by Much and Gast [ 11] will be presented here, slightly 
reformulated. 

The micellar solution is divided into spherical cells, each containing one spherical micelle 
with its accompanying solution. The volume of the cell is the inverse of the micellar number 
density. The lyophobic A-block constitutes the micellar core, whereas the shell contains the 
lyophilic B-block swollen with solvent as shown in Figure 2. The third region contains non- 
assembled (referred to as free) block copolymers and solvent. The notations used for the 
volumes of the three regions, the radius of the core, the thickness of the shell, and the volume 
fractions are also shown in Figure 2. The number of segments of the copolymer blocks are 
represented by N A and N 8, respectively, and that of the solvent by N s. All segments have the 
same length, a, and the same volume, a 3. The various interactions are described by Flory- 
Huggins x-parameters [14]. For simplicity, the B segments and the solvent molecules are 
identical, i.e, ZBS = 0 and ZAB - ~,AS' and hence the systems is characterized by only one 
interaction parameter, viz. Z. 

The free energy of a single cell is expressed as 

T.qshell~ Ffree _ T.q micelle 
F = (Finterfac e + Fde f - "-'mix, + "mix -'-'mix (3.~) 

where the terms in parentheses represent the free energy of a single micelle fixed in space. The 
first term in eq (3.1) denotes the interfacial free energy of the interface between the core 
composed by A-segments and the shell composed by B-segments and solvent which is given by 

Finterfaee = 4~R2Aqr (3.2) 

where y = kT (Z/6) 1/2 [15]. The second contribution arises from the elastic deformation of the 
copolymers in the micelle. It is assumed that all A-blocks are uniformly stretched/compressed 
from their Gaussian behaviour to an end-to-end distance equal to R A and similarly for the B- 
blocks. Leibler et al. [ 10] employed 

i~Fdef_ 3 ~ ( u l / 2 a  'RA )2 +/.NI/R2a/-2+/ RB / 2 / -2 
Nal/2a (3.3) 

where p is the number of copolymers in the micelle. The following term in eq (3.1) represents 
the mixing free energy of solvent molecules with the B-segments in the shell 

,qshell/ic V shell 
----mix ...= a3  [ 1 "shellln(t~hell)]'~ss~S (3.4) 

Finally, the remaining two terms in eq (3.1) arise from the free energy of the homogeneous 
solution outside the micelles and the free energy of mixing the micellar aggregates in the 
micellar solution. Using Flory-Huggins mean-field model of homogeneous polymer solutions 
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Figure 2. Illustration of the model showing the core and shell regions of a spherical micelle 
composed by an AB-diblock copolymer and the surrounding homogeneous polymer solution 
(lower panel). The volume fractions of the components in the three uniform regions are also 
displayed (upper panel). 

[ 14], the former of the two is expressed as 

vf [ 1 R 1~ 'free 1 1 . free free Z ~ e e ( ~ e e  free 
---mix = a3  NA. k lff B ~ee ln(c~ 'tee) + "~sq)s ln(~s )+ + ~s ) (3.5) 

where ~ee = NA/( NA+ N B ) ~  and similarly for ~ee. The latter term is represented by 

-'qm!celle/k = ~II[r ln(0M) + (1 - *M) In(1 -- *M)] 
"-'mix �9 "~ (3.6) 

where (~M -- v M / v  denotes the micellar volume fraction with V M = V c~ 4- V shell and V = V M 4- 
free core V . By employing the incompressibillity relations V = (4~/3~R 3_  ,,N a 3 V shell - 

+RB)3].RA3=PNBa3 .hell, and r.,.evfree=t~pV_p(NA + j / t l ~ , ,  t~" A . -  r' A ' (4rd3)[(R A NB)a~ as well as the fact 
that that volume fractions should sum up to one, F can be expressed in only three independent 
variables. For numerical computation, p (the aggregation number), t~ heu (the volume fraction of 
B segments in the shell), and ~ree (the volume fraction of free polymers) form a convenient set. 

After minimization of F with respect of these variables, the equilibrium properties of the 
micellar solution of this model are obtained. In the original reports [ 10,11], the three coupled 
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nonlinear equations obtained after partial differentiation were solved; however direct 
minimization is more straightforward and works fine. 

3.2. Triblock copolymers 
Extensions of the core-shell theory to cover cases with ABA-triblock copolymers have 

been proposed [ 16-18]. The main additional contribution is the cost for the middle block to 
form a loop. Ten Brinke and Hadziioannou [16] used the term (3/2)l~lkTln(Nloot,) per polymer 
chain, where I]j ~ 1 and Nloop is the length of looping middle block. Later, Bal~ara et al. [ 17] 
suggested a smaller free energy cost, (l/2)kTln(~:zNloop), as the leading term. The general 
result is that the triblock copolymer displays an increased cmc as compared to a diblock 
copolymer with same A/B ratio and with half molecular mass. Balsara et al. [ 17] showed that 
the two cases lead to considerably differing increases in the cmc as compared to no loop 
formation. Recently, ordered structures occurring in ABC-triblock copolymers have received 
increasing attention [ 19,20]. A large number of possible morphologies have been suggested in 
melt and the these ideas should also hold for ABC-triblock copolymers in solution. 

3.3. Polydisperse and mixed micelles 
In the description so far, only monodisperse micelles have been considered. By utilizing 

theories developed for the self-assembly of short chain surfactants, Nagarajan and Ganesh [21] 
proposed a theory which contains micelles of all possible sizes beside the solvent molecules and 
singly dispersed copolymer molecules (unimers). The minimization of the free energy of this 
multicomponent system leads to an expression for the equilibrium size distribution of the 
micelles. Similarly, Gao and Eisenberg adapted a slightly different theory of describing the 
micellization of surfactants to the micellization of block copolymers [22]. 

The case of a mixture of two different diblock copolymers has been examined by Marques 
and coworkers [23,24]. For many conditions only mixed micelles are formed, but they also 
found situations where mixed micelles coexist with micelles formed by only one of the 
copolymers. 

3.4. Solubilization 
Nagarajan and Ganesh have also considered the case where lyophobic molecules are 

solubilized in the core of the micelles [25]. They found that the width of the distribution of the 
aggregation number is normally of minor consequence, and similarly the variation of the 
number of solutes in the miceUes is small. The solubilization increases the aggregation number 
of the micelle and strongly increases the amount of solutes able to be dissolved in the phase. 
The effect of chain architecture on the solubilization has also bee examined [26]. 

3.5. Polyelectrolytes 
Marko and Robin have derived expressions for the cmc as well as for the micellar size and 

aggregation number at the cmc for an AB block copolymer where A is insoluble and B is 
charged [27]. They used a similar approach as in section 3.1, but employed different free 
energy contributions. In particular, the driving force of the micellization is the bad solvency of 
the A block, which is opposed by the electrostatic repulsion within and among the charged 
blocks. 
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3.6. Selected results 
The type of predictions obtained from the core-shell model, as described in section 3.1, 

will be illustrated for a symmetric diblock copolymer with N a = N B = 50 in a solvent with N s = 
1. The corresponding results of the more extended self-consistent lattice mean-field lattice 
theory (to be presented in section 4 below) are also included. 

The volume fraction of free polymers (in the micellar free solution) and the volume 
fraction of micelles as a function of the total polymer volume fraction at X = 1.45 is given in 
Figure 3. At sufficiently low polymer volume fractions, the global free energy, as expressed by 
eqs (3.1)-(3.6), is obtained for CM- 0, i.e., there is only a homogeneous polymer solution 
without any miceUes. However, at increasing {~p, the global minimum occurs now for ~M > 0, 
hence micelles are present. The volume fraction where this transition occurs is referred to as the 
critical micellar concentration, and t~, mc -- 10 -5 for the present parameter values. Above 0~, mc, 
the volume fraction of free polymers is almost constant; t~ tee increases only 10% when Cp 
increases 1000-fold. 

Figure 4 shows that also the predicted aggregation number p is essentially independent of 
the polymer volume fraction and equals to ca. 55. The other parameter characterizing the 
micelle, ~hell, is even less sensitive to t~p. The weak influence of {~p on p and {~hell makes it 
possible to simplify the determination of these quantities by only considering the first three 
terms in eq (3.1) [10]. However, in order to determine ~mc and t~ tee, the full expression is 
needed. Above the cmc, there is a partitioning of the polymers between the micelles and the 
intervening solution. Figure 4 also shows that the fraction of self-assembled block copolymers 
increases after the cmc to reach 90% at Cp -- 10~, me. 

The extension of the micellar core, the thickness of the shell, and the volume fraction of 
solvent in the shell are also of large interest. These quantities are shown in Figure 5 in terms of 
radial volume fraction profiles. For the present system, the core extends nearly 9 length units 
and the shell is 10.4 length units wide. Thus, both blocks are extended beyond their random 
coil configurations. The shell is highly swollen; r is only ca. 11%. 

The degree of incompatibility between the A-segments on the one hand and the B- 
segments and solvent molecules on the other should affect the cmc. Figure 6 shows that the cmc 
is indeed very sensitive to X. An increase of X from 1.3 to 1.5 reduces t~, mc from 10 -2 to 10 6. 
The rather high value of NAZ (=65) required to obtain micelles in a solution of small molecules 
is related to the large loss in mixing entropy of the solution upon micellization. Already at N s = 
5, it is sufficient with X = 0.435 (NAZ = 22) to obtain r = 10.2. As N s is increased, the 
penetration of the solvent into the shell region is reduced as demonstrated by an increased 0~ hell 
and a reduced shell thickness, which leads to less stretched B-blocks. 

4. NUMERICAL SELF-CONSISTENT MEAN-FIELD MODELS 

Mean-field descriptions of inhomogeneous systems containing chain molecules have been 
developed along two main directions. A lattice version was developed by Scheutjens and Fleer 
[28] from the earlier work by Flory [14]. It has been widely used to model adsorption at 
interfaces [29] and self-assembly of chain molecules (surfactants and polymers). Independently 
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Figure 3. Volume fraction of free polymers t~, tee and of micelles +M as a function of the total 
polymer volume fraction ~p for a diblock copolymer with NA = N B = 50 and N s = 1 from the 
core-shell model with g = 1.45 (solid curves) and the lattice mean-field theory with Z = 1.24 
and a hexagonal closed-packed lattice (dashed curves). Different values of g were selected to 
give the same cmc. (In the core-shell model, ~ree refers to the volume fraction in the micellar 
free subvolume.) 
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Figure 4. Aggregation number p (left axis) and fraction of polymers in micelles (fight axis) as a 
function of the total polymer volume fraction ~p for a diblock copolymer with N A = N B = 50 
and N s = 1 from the core-shell model with Z = 1.45 (solid curves) and the lattice mean-field 
theory with X = 1.24 and a hexagonal closed-packed lattice (dashed curves). 
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and in parallel, the corresponding continuum version, as derived from the functional integral 
formalism [30], has been described by Hong and Noolandi [31] and utilized in a number of 
investigations, in particular of block copolymers at fluid interfaces. Recently, both approaches 
were applied to the same model system and were compared directly [32]. Both approaches are 
presented below by using, as far as possible, equivalent expressions to highlight their 
similarities. For simplicity, only the case of the homopolymers is considered, but both 
approaches are readily generalized to copolymers [33]. 

4.1. Lattice approach 
The division of the space into lattice sites, which are occupied by a solvent molecules or a 

segment of a chain molecule is fundamental in the lattice approach. Normally, spatial 
inhomogeneities are permitted in one direction and the random-mixing approximation is applied 
to all sites in each layer separately. The number of nearest neighbour sites, z, is determined 
from the lattice topology. A chain molecule is described as a connective walk on the lattice. The 
relative degeneration of a component x in conformation c is given by 

rg 

O~xc = Ls= 1 I - I ~ ,  (s) 
s=2 

(4.1) 

where Ls= 1 denotes the number of equivalent starting positions, X(s) is a simplified notation for 
the transition probability of a random walk from the site where segment s-1 is located to the site 
where segment s is located, and is r x the number of segments of component x. 

The free energy expression of the system is given by 

1 
13(A-A*) = ~ ~  nxe In nxcrx + ~- ~ L i ~ ~  ~xi~xx.<~,xi> 

0)xc 
X C i X X' 

(4.2) 

where the first factor represents the entropy and the latter the interaction among the segments of 
the different components using Flory-Huggins interaction parameter Z. In eq (4.2), nxe denotes 
the number of molecules of type x in conformation c, L i the number of sites in layer i, and 
<...> an average over layer i-l, i, and i+l. From the maximization of the partition function 
(minimization of the free energy) with respect to the set of all conformations { nxc } under the 
constraint of filled lattice sites, the distribution of segment s of component x in layer i can be 
expressed by 

nx } T )s-I 
nxs i = . . . . . . . .  sT.(w)q_l.p(x, li { s T . ( W ) r x - I . A i } { A i  . ( W  .p(x,1)} (4.3) 

where the first factor is a normalization factor assuring that n x molecules of type x is present. 
The last factor denotes the number of chains of type x with the start distribution p(x, 1) among 
the layers which has its s:th segment in layer i and the second factor gives the appropriate 



27 

weight of the remaining part of the chain to be somewhere on the lattice. In eq (4.3), W is a 
tridiagonal matrix comprising elements which contains factors describing the lattice topology 
and factors containing the mean-field potential for segments of component x, AiT = (0 ..... 0, 1, 
0 ..... 0~, and s T = (1, 1 ..... 1). The number of segments of component x in layer i is given by 
nxi = ~ rs~ 1 nxs i. Finally, the volume fraction in a layer, ~, is obtained by diving nxs i and nxi by 
the number of lattice sites in that layer. 

4.2. Continuum approach 
In the continuum description, the partition function for a multicomponent system can be 

expressed as a functional integral over all space curves representing all chain molecules. 
Following Hong and Noolandi [31 ], the probability functional for a given space curve P[rx(.)] 
of a flexible chain molecules of type x (component x) is assumed to be of the Wiener form, i.e., 

P[rx(.)] 0~ e x d -  3-~  f2Xdt i'x2(t)] 
~-[. 2b 2 (4.4) 

b being the Kuhn segment length of a chain and r x the number of statistical segments. In an 
(external) field the distribution function of component x with one end at r 0 and the other at r is 
given by the Green function Qx(r, rxl r0), which satisfies the modified diffusion equation 

OQx b2v20  
~gt = "6"- -~x - t~ (4.5) 

with Qx(r, 01r  0) = 8(r-  r0), where tOx[rx(t)] is the external potential. 
From a free energy functional involving entropic terms (of the type Px(r) In Px(r), where 

Px(r) denotes the segment number density of component x at r) and enthalpic terms (of the type 
Px(r)Px.(r)Xxx., where Zxx' is the Flory-Huggins interaction parameter between segments in 
components x and x'), minimization of the partition function with the constraint of constant 
local density gives the mean-field potential above denoted as an external potential. 

From the Green functions, all relevant properties can be calculated. The density of 
segments of rank t of component x, Px(r,t), is, e.g., given by 

{ nx } 
px(r ' t)=  aqd 0Q (r,rx' 0' {~dr~176176176 (4.6) 

where the three factors have exactly the corresponding meaning as in eq (4.3). By integration 
over t, the polymer density Px(r) (equivalent to nxi ) is readily obtained from eq (4.6). 

Thus, from the specification of the chain molecules in terms of their sequence of different 
types of segments and the interaction among all pairs of segment types, the distribution of the 
different segments in the inhomogeneous system is available. The calculations can be performed 
either with a specified number of components { nx} as indicated above, or the inhomogeneous 
system can be in equilibrium with a bulk of specified composition. 
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The main difference between the lattice and continuum approaches is the description of the 
chain conformations. In the lattice theory, these are relatively few due to the restriction to a 
lattice, whereas in the continuum theory they are infinite. However, the discretization of the 
equations makes the number of conformations finite, and in the limit of a mesh size of the 
discretization equal to the lattice size the approaches are essentially the same. Still, for more 
complex geometries, the continuum approach seems to be more tractable [19]. 

4.3. Different extensions 
Over the years, the lattice approach has been extended to include, e.g., (i) charged 

components, (ii) branched components, (iii) bond angle restrictions, and (iv) the exclusion of 
direct backfolding [29]. Moreover, both the lattice and the continuum approaches have been 
applied to curved geometries and to the case where the segments have internal degrees of 
freedom. The latter extension has been very fruitful for modeling the reduced solubility of, e.g., 
poly(ethylene oxide) (PEO) in polar solvent [32,34-40], and has been used for modeling 
titrating polyelectrolytes [41]. 

4.4. Selected results 
Some illustrative predictions of the self-assembly of A50B50 block copolymers in 

monomeric and selective solvent from the lattice theory were given in Figures 3-5. The 
qualitative predictions from the core-shell and the numerical self-consistent mean-field lattice 
approaches are the same. However, some major differences are discemable: (i) the cmc depends 
differently on Z due to different descriptions (free energy terms) of the system, (ii) compared 
for the same cmc (by selecting different x-values), different aggregation numbers are predicted, 
and (iii) the lattice approach predicts an A-B separation where the interfacial width is 
substantial (for this model system). 

Radial volume fraction profiles foi" a more "hairy" polymeric micelle formed by As0B500 
block copolymers in solution are shown in Figure 7. The central lyophobic core of A segments 
is well represented by a block profile, whereas the lyophilic B segments form a highly solvated 
corona. Further analyses of Leermakers et al. [42] suggested a division of the profile of the B 
segments into four parts: (i) the "proximal" one where B segments are adsorbed onto the core, 
(ii) the "central" one where a power law regime exists, (iii) a "parabolic-like" regime further out 
and finally (iv) a "distal" regime where the profile approaches the bulk value approximately 
exponentially (cf. inset of Figure 7). Thus, such model calculations can provide guidance as to 
how to select profiles in more simple theories/models and in the evaluation of scattering 
experiments. 

Since the free energy of the system and the chemical potentials of the components are 
available, we are also able to predict the stability of different ordered phases relatively to each 
other and to the disordered (homogeneous) one. By calculating the stability of phases with 
different structures, we can predict a phase diagram that contains different ordered phases. 
Figure 8 shows the prediction of such a phase diagram for the (EO)21(PO)47(EO)21 triblock 
copolymer (Pluronic P94) in aqueous solution, made by Noolandi et al. [32]. At low polymer 
volume fraction we have the disordered L 1 phase. At increasing polymer concentration there are 
successive transitions to a cubic lattice of packed spherical aggregates (I1), hexagonaUy packed 
cylindrical aggregates (Hi), and lamellar aggregates (La). At even higher concentrations the 
reverse phases appear where the water is localized in the center of the cylindrical aggregates 
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Figure 7. Radial volume fraction profiles of A and B segments and solvent through a spherical 
micelle of Aso B500 molecules for X AB = ~BS = 0.5, ~AS = 2.0, and N = 54 using a face a g g  

centered cubic lattice. The inset shows the profile of the B segments in a log-log representation 
and the extension of the different regions are indicated. The profile for the "distal" region is not 
visible. 
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(H2) and in the center of the reversed packed micelles (I2). Finally, at very high polymer 
concentrations a new disordered phase appears (L2). The two-phase regions between the one- 
phase regions were not considered. At increasing temperature the solubility of the polymer is 
reduced, promoting a change in the stability of the phases towards less curved surfaces (defined 
with water on the outside). Although the lattice and continuum approaches give slightly 
different phase boundaries, the general appearance is the same. The phase boundaries predicted 
by the two numerical methods seem to approach each other as the polymer chains becomes 
longer [32]. By using the theory of thermodynamics for small systems [43], a prediction of the 
cmc in the disordered L 1 phase can be made. The hatched area in Figure 8 shows the extension 
of the disordered micellar solution. 

The volume fraction profiles of EO, PO, and H20 for the H l phase are shown in Figure 
9. It is clear that the interior of the rods is rich in the hydrophobic PO, whereas the outer parts 
consist of hydrated EO segments. At increasing temperature, the domain size increases and the 
volume fraction of the EO segments in the water region is reduced. The latter is a consequence 
of the reduced solubility as modeled by using internal degrees of freedom for EO. Since EO is 
not fully compatible with PO, the EO segments tends to form a new shell between the PO core 
and the continuous water region. 

In the process of the determination of the most stable phase, the domain size of each 
phase is optimized. Figure 10 shows the predicted domain sizes for the equilibrium phases at 
two temperatures. Generally the domain sizes increase with increasing temperature. This is 
related to the smaller projected surface area for the PEO block due to the reduced solubility. 
Moreover, the domain size increases at transitions where the curvature is increased, but 
decreases within a phase as the polymer concentration is increased. 

Most synthetic polymers are polydisperse. In the case of block copolymers, even a small 
polydispersity may profoundly affect the behaviour of the properties of the solution. 

The lattice approach has been used to examine the effect of a polydisperse PEO-PPO-PEO 
triblock copolymer on the location of the cmc [39]. The polydisperse sample were represented 
by several components selected from the Schulz-Zimm distribution. Both the case of only a 
mass polydispersity and the case of mass-and-composition polydispersity were considered. 
Figure 11 shows how the location of the cmc changes as a function of the polydispersity ratio 
Mm/M n for (EO)37(PO)56(EO)37 triblock copolymer (Pluronic P105) in aqueous solution. Here 
M m and M n are the mass and number weighted mass averages, respectively. Depending on the 
criterion of the cmc (here the volume fraction of micelles in the solution is used) the cmc may 
change by several orders of magnitude already at the moderate polydispersity ratio of Mm/Mn= 
1.3. Further investigations showed that the radial extension of the micelle decreases at 
increasing total polymer volume fraction due to the replacement of longer and less soluble 
polymer fractions with shorter and more soluble fractions [39]. Such observations have been 
made experimentally by Tuzar et al. [44] in a different system but the origin of the trends were 
never clarified. 

It is straightforward to study the solubilization of lyophobic components in the center of 
the micelles [38,40,45]. One merely introduces an additional component with appropriate 
interaction parameters beside the block copolymer and the solvent. Figure 12 shows the radial 
volume fraction profiles for (EO)30(PO)61(EO)30 triblock copolymer (Pluronic P104) in 
aqueous solution without and with a hydrophobic solute [40]. The model predicts that the solute 
is solubilized in the core of the micelle but tends to avoid the outer part of the core. Moreover, 
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the micellar aggregation number increases from ca. 10 to ca. 55 and the increase of the miceUar 
size is obvious from the profiles. Thus, the scaling, semi-analytic, and numerical mean-field 
approaches all predict a micellar growth upon solubilization. 

5. SIMULATION APPROACHES 

We will restrict the use of the word simulation to techniques such as Monte Cado 
simulation and molecular dynamics. These methods provide us with a wealth of information of 
model systems by making full statistical mechanical averages over the relevant degrees of 
freedom. The methods are computationally intensive and have grown in parallel with the 
computer development. Simulation methods have been applied to polymeric systems as well to 
other molecular systems. A recent book edited by K. Binder serves as an excellent introduction 
to simulation techniques and how these are applied to different subfields of polymeric systems 
[46]. 

The simulation of polymers is inherently computationally demanding due to the slow 
rearrangement of the molecules and this is in particular accentuated when investigating non-local 
properties. In order to facilitate the enumeration of the conformations, lattice systems are 
frequently used. It is today still not possible to routinely make direct simulations of the self- 
assembly of long block copolymers. However, substantial effort has been devoted to the self- 
association into micelles and liquid crystalline phases of short chain molecules. These 
simulations have been performed either on a lattice or off-lattice with simple spring-bead 
models. Moreover, the structure and dynamics of single miceUes as well as mono- and bilayers 
have been investigated with (nearly) fully atomistic models [47-49], but in these studies the 
simulations were started from already assembled systems. 

5.1. Micellar structure and the cmc 
Pratt and coworkers performed early Monte Carlo simulations of single micelles formed 

by a fixed number of A3B and AsB chains on a diamond lattice [50,51 ]. Rodrigues and Mattice 
made further investigations of the structure of micelles composed of A10B10 [52] and A5BIoA 5 
chains [53]. These studies showed that (i) the interfacial region between the two types of beads 
is significant and (ii) that the shape of the aggregate is not perfectly spherical. Thus, the 
simulation methods, like the numerical self-consistent mean-field methods, provide information 
on the thickness of the interfacial region between the two blocks, whereas the other approaches 
often neglect the interfacial thickness. Moreover, the strength of the simulation methods is that 
the shape of the aggregate is a result of the system parameters and that all relevant fluctuations 
are included. 

Subsequent lattice [54-61 ] and off-lattice [62,63] simulations involved a larger number of 
chain molecules making it possible to establish an equilibrium among free unimers and several 
micelles of different size. Beside structural information, these more extended studies can 
provide information of the distribution function of the aggregation number and the cmc. 

The self-assembly of the diblock "copolymer" Al0Bl0 on a primitive cubic lattice with six 
interacting neighbours has been extensively investigated by Mattice and coworkers [52,56-58] 
and by Wijmans and Linse [59-61 ]. These studies gives a detailed picture of the micellization. 
Figure 13 clearly illustrates the plateau of the chemical potential of the chains as a function of 
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the total volume fraction. The levelling off of the chemical potential is of course associated with 
the formation of micelles and the intersection of the extrapolated lines can be taken as the cmc. 
The volume fraction of free (non-associated) chains, ofree, as a function of the total volume 
fraction is displayed in Figure 14. As for previous theories (cf. Figure 3), ofree levels off when 
the miceUes start to form. In fact, the simulation studies predict a reduction of t~ free at high 
micellar volume fractions. An extrapolation gives an estimate of the cmc in good agreement with 
that obtained from the chemical potentials. Figure 15 illustrates the bimodal distribution of 
aggregate sizes above the cmc as obtained from simulation. The solution is essentially 
composed by free chains, chains in small clusters composed by a few chains, and closed 
aggregates with ca. 20-40 chains. Additional analysis shows that micelles with an aggregation 
number of 30 are only weakly distorted toward a prolate shape from a spherical symmetry [59]. 
Similar characteristic micellar size distribution functions were also obtained from lattice 
simulations of short chain molecules by Desplat and Care [55], by Larson [64], and from 
extensive off-lattice simulations of eight bead long chain molecules with short range interactions 
by Smit et a1.[63]. 

5.2. Ordered phases 
A number of different lattice simulations have been performed to examine the ordered 

phases occurring in block copolymers solutions [64-73]. These studies cover chain lengths 
from 8 to almost 200 beads and deal with dilute as well as with more concentrated solutions 
with either a selective solvent, a nonselective solvent, or a binary solvent. 

So far, close packed spheres of different cubic symmetries [65,66,69,71,72], 
hexagonally packed cylinders [64-66,69,71,72], the gyroidal structure [69], perforated lamellae 
[64-67,69,72], and lamellae [64-73], have been identified. Figure 16 shows a ternary phase 
diagram for the A4B4/A/B system obtained from lattice Monte Carlo simulations. Besides the 
extended classical lyotropic liquid crystalline phases, a narrow gyroidal phase was observed 
between the hexagonal and lamellar region. So far, it is not fully clear whether the gyroidal 
phase is a stable or only metastable phase [66]. In the disordered phases the simulation 
predicted an elongation of the micelles close to the to liquid crystalline phases, and the lamellar 
phase displayed perforations near the phase boundary toward the hexagonal phases. In such 
investigations, the size of the simulation box imposes nonphysical constrains on the domain 
sizes. This problem becomes less severe as the box length increases relative to the domain size. 
This influence has been systematically investigated for smaller chains as A3B3, A4B4, and 
A3B 12 [66]. 

The self-assembly and the concomitant microphase separation occurring in melts (as well 
as in nonselective solvents) are only driven by the interactions among the A and B segments 
themselves. However, lattice simulation of melts are technically difficult to perform, but by 
introducing vacancies, or equivalently, a nonselective solvent, it is possible to deal with melts 
and the effect of the the vacancies is taken account by a rescaling of the interaction parameter. 
Extensive simulations has been performed to investigate the critical zN and the stretching of the 
blocks of symmetric block copolymers. In particular, simulations [68,73], show that the order- 
disorder transition of block copolymer occurs at gN > 11.5 as predicted by mean-field theory in 
the limit of infinite chain lengths [74]. 
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6. CONCLUSIONS 

The area of modelling block copolymers in solution is rapidly expanding and develops in 
close connection with the experimental progress. Some of the major approaches used to 
examine various aspects of the self-assembly of block copolymers in solution have been given. 
As we have seen, the development has been benefitted from the field of block copolymer melts 
and from the field of self-assembly of surfactants. 

In brief, the scaling approach relies on a number of basic approximations which 
successively are relaxed in the more elaborated approaches. Typical for the scaling approach are 
the simple expressions relating a few variables describing the system which are obtained after a 
minimization of the free energy. In the semi-analytic mean-field models, the full functional 
dependencies among the variables are obtained, again, after a minimization of the free energy. 
Moreover, since a reference state is included, the theories are also able to predict the cmc, the 
micellar volume fractions etc, besides the aggregation number and the size of the micellar core 
and shell. The remaining two approaches are more fundamental in the sense that they explicitly 
contain chain molecules and that they are based on configurational averages. In the numerical 
self-consistent mean-field models, properties of the system are calculated for a given 
morphology. Volume fraction profiles appear as a results and are hence not a part of the 
assumption. In addition to the properties given above, predictions of the interfacial width and 
interfacial tension are made, and information on the distribution of individual segments is 
provided. Finally, in the simulation approaches, the mean-field approach is lifted and the 
morphology of the equilibrium structures is obtained directly. Furthermore, since fluctuations in 
all 3 dimensions are included, the results are improved over those from the numerical self- 
consistent mean-field models. However, (i) the simulation results are subjected to statistical 
uncertainty, (ii) the influence of boundary conditions, system size etc has to be assessed, and 
(iii) considerations of whether the system is in equilibrium or not has to be addressed. 

Hence, the quality of the predictions are improved in the order that the types of 
approaches have been presented. Still, the scaling approach provides us with simple and very 
useful pictures of the system which is not the case for the more numerically intensive methods. 
Also, the computational effort increases in the same direction. Whereas the computer time is 
negligible for the minimization of the free energy in the semi-analytic mean-filed models (< 1 
CPU second on a workstation), it is of the order of seconds or minutes for solving the set of 
non-linear equations obtained from the numerical self-consistent mean-field models. Finally, the 
computational effort for simulation of chain systems is of the order of days and upwards. 

Nevertheless, the more computationally demanding approaches are expected to grow in 
importance. Fewer approximations are involved and a more detailed picture is provided. So far, 
most simulations have dealt with generic chains, but it is feasible to bring more chemistry into 
the models. An example illustrated here is the notion of internal degrees of freedom which 
makes it possible to model temperature dependent solvency from basic assumptions. This and 
similar approaches could be directly transferred into the models used in the simulation 
investigations. Another area of expected development is more complex models of the self- 
assembly of polyelectrolytes and ionomers. The increased number of system parameters and the 
computer intensive evaluation of the electrostatic interactions in direct simulations have, so far, 
hampered the progress here. 

Finally, in practical all approaches, the short-range interaction are described by ~- 
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parameters or nearest neighbour interactions. In order to mimic some real system, suitable 
assignments have to be made. So far, the values of these parameters have been (i) estimated 
from more elaborate theories, (ii) extracted from simulation of small systems described on an 
atomic level, or (iii) obtained by fitting to experimental data. Due to the great simplification of 
the models, these parameters should be viewed as effective parameters with, at most, some 
physical relevance, making procedure (i) and (ii) less useful. This is, e.g., illustrated by Figure 
6 where two different theories gives strongly different cmc for the same ~-value. The reason is 
of course (i) that these terms in which the ~-parameter enter are different, and (ii) these terms 
are balanced by other free energy terms which depend on the type of theory. The unrealistically 
low cmc ~ = 10 -34 for PEO-PPO diblock copolymer with 70% PEO as obtained by Nagarajan 
and Ganesh [21 ] by using ~-parameter from other sources constitutes a second example. Thus, 
it is clear that ~-parameters are not generally transferable between the different types of theories 
and there is also no guaranty of transferablilty between different applications of the same 
theory/model. However, our own experience is that for EO- and PO-containing polymers in 
aqueous solution, we have successfully been able to gradually build up values of ~-parameters 
from simpler system and employ those in more complex ones in a fruitful manner. In this 
scheme, phase diagrams of the binary PEO/water system were used to fit the values of the 
internal state parameters of EO and the ~EO,water-parameters (there are several parameters due 
tO the presence of internal states) [34] and similarly for PPO in water [35]. Thereafter, 
interaction parameters between the EO and PO segments were fitted by using phase diagrams of 
the ternary PEO/PPO/water system and the previous obtained values from the binary systems 
[75]. Finally, the full set of parameters was used to predict a number of different properties of 
PEO-PPO-PEO triblock copolymers at different conditions with satisfactorily predictive power 
[32,36-39]. 
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