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2 Crystallinity: Polymer Morphology

Chapter 1 pp. 9, Chapter 2 pp. 13-23, Chapter 4 (all)

General Issues

Polymers are unique among engineering materials since they are the only common
technological  material in which the amorphous state can be the minimum energy
state. This is a consequence of topology.  Molecular topology is a description of
molecules  which  includes  their  stereo-chemical  arrangement,  branching,
formation  of helices and network/looping/entanglement characteristics. Consider
two chains represented using a worm-like model (below)

In  the  left  the  chains  are  not  topologically  constrained ,  in the right the chains
have  a  single  loop topology and are intertwined. It is impossible for the chains
on  the  right  to  crystallize  even  though  they  may  have  the  same  chemical
composition and structure as the chains on the left! This is true even at absolute
0 and given infinite time for relaxation (no kinetic effects). 

Polymers  typically  have  small  diffusion  coefficients  in  the  melt  and
high-molecular  weight  polymers  (Above  the  entanglement  molecular  weight,
about 10kg/mole) have a high degree of entanglement which prevents the chains
from  reaching  an  equilibrium  structure.  Materials  such  as  Polycarbonate  are
usually used in the glassy state even though they can crystallize under the proper
conditions.  Usually,  better  mechanical  properties  result  from  lower  degrees  of
crystallinity  in  polymers.  Some  polymers such as atactic (common) polystyrene
are  not  capable  of  crystallizing  at  all.  This  is  due  to  stereochemical
polydispersity.

Chemical Configuration vs. Conformation. 

The  terms  configuration  and  conformation  are  often  used interchangeably. It is
important  to  make  a  distinction  between  the  chemical  configuration  of  a
polymer  chain  which  includes  block  distribution,  tacticity  groupings  and
branching  as  a  separated  topic  from  coil  conformation  which  has  to  do  the
chain dimensional scaling and size. Local  conformation  includes helical coiling
o f  the  chains  (secondary  structure in proteins) and formation of larger partially
collapsed  structures  (tertiary  structures in proteins). The structure of a chain is
intimately tied to the crystalline unit cell and the colloidal shape of crystallites in
polymers.  The  structure  of  a  synthetic  polymer  chain  is  polydisperse
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in  all  aspects.  Structure is built up from,

1 ) Chemical Configuration-  The arrangement of chemical units in the chain. This
is known as chain primary structure in proteins.

2 ) Local Conformation-  Rotational states of chemical bonds, formation of helical
structures.  This  is  know  as  chain  secondary  structure  in  proteins.

3 )  Larger  scale  conformation  such  as  helix  folding  and  formation  of  "blob"
substructures.  This  is  known  as  tertiary  structure  in  proteins .

4 ) Global Chain Conformation which is governed by entropy. This dominates the
structural scaling of chain size with molecular weight.

Helical structures

Formation  of  Helical  structures  is  usually  required  for  polymers to crystallize.
The formation of long sequences of helical structures requires long sequences of
uniform  tacticity  in  chain  units.  Figures  2.3  and  2.4  (Strobl  pp.  18-19).

Trans Gauche conformations in simple vinyl polymers.

Polyethylene  is  the  most common commercial polymer. The secondary structure
required  for  PE  to  crystallize  is  a  planar  zigzag  conformation  with  no  helical
twist. Polyethylene does not possess tacticity since all substitutent groups are the
same. If we consider a Neuman Projection along the chain for two carbons it can
be  seen  that  rotation  about  the  C-C  bond  leads  to  variable  energy  states.

 

The  minimum  in  this  energy  diagram  (shown to the left) is the trans state. The
subminima are the gauche states. The planar zigzag conformation is produced by
all trans states.

"Molecular" scale Crystalline Structure:

Consider that we can form an all-trans oligmeric polyethylene sample an bring it
below  the  crystallization  temperature.  The  molecules  will  be  in  the  minimum
energy  state  and  will be in a planar zigzag form. These molecular sheets, when
viewed  from  end will look like a line just as viewing a rigid strip from the end
will appear as a line. 

Crystal systems are described by lattice parameters (for review see Cullity X-ray
Diffraction for instance). A unit cell consists of three size parameters, a,b,c and
three angles α, β, γ.  Cells are categorized into 14 Bravis Lattices which can be categorized by
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symmetry  for  instance.  All  unit  cells  fall  into  one  of  the  Bravis  Lattices.  Typically,  simple
molecules and atoms form highly symmetric unit cells such as simple cubic (a=b=c, α=β=γ=90°)
or  variants  such  as  Face  Center  Cubic  or  Body  Centered  Cubic. The highest density crystal is
formed equivalently by FCC and Hexagonal Closest Packed (HCP) crystal structures. These are
the  crystal  structures  chosen  by  extremely  simple  systems  such  as  colloidal  crystals.  Also,
Proteins  will  usually  crystallize  into  one  of  these  closest  packed  forms.  This  is  because  the
collapsed protein structure (the whole protein) crystallizes as a unit cell lattice site. In some cases it
is possible to manipulate protein molecules to crystallize in lamellar crystals but this is extremely
difficult.

As  the  unit  cell  lattice  site  becomes  more  complicated  and/or  becomes  capable  of  bonding  in
different  ways  in  different  directions  the  Bravis  lattice  becomes  more  complicated,  i.e.  less
symmetric. This is true for oligomeric organic molecules. For example olefins (such as dodecane
(n=12)  and  squalene  (n=112))  crystallize into an orthorhombic unit cells which have a, b and c
different  while  α=β=γ=90 °.  The  reason  a,  b  and  c  are  different  is  the  different  bonding
mechanisms  in  the  different  directions.  This  is  reflected  in  vastly  different  thermal  expansion
coefficients  in  the  different  directions.  The  orthorhombic structure of olefinic crystals is shown
below. Two chains make up the unit cell lattice site (shown in bold). The direction of the planar
zigzag (or helix) in a polymer crystal is always the c-axis by convention.

PE/Olefin crystal structure.

See also, Strobl pp. 155 figure 4.11. 

**********************

Notes on Crystal Structure From Cullity:(Presented here as a reference)

**********************

XRD and Crystalline Structure: 

Crystals  and  the  crystalline  state  can be defined in a number of different ways, density, enthalpy or free energy
change  on  heating,  spectroscopic associations, presence of certain planes of registry in microscopy for instance.
For XRD a crystal is defined as perfect 3-D order. This corresponds to the strictest definition of a crystal. For a
semi-crystalline polymer, for instance, 100% crystallinity is never obtained by this definition since there are large
interfacial regions where some degree of disorder is present. Perfect 3-D order means that the structure repeats in
all directions so that by describing the structure locally (in a repeating 3-d unit) the entire structure can be uniquely
described. 

Nomenclature
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Point  Lattice  =  An  array  of  points  in  space  so  arranges  that  each  point  has  identical  surroundings

Unit Cell  = a collection of 3 vectors along Crystallographic axes each of which is described by a magnitude
or  length  and  an  angle  from  the  origin.  These  6  parameters  (3  magnitudes  and  3  directions)  are  the  Lattice
parameters.

There  are  several  ways to categorize crystals. One involves the 7  crystal systems  described on pp. 35 of the
text. The crystal systems are described in terms of the Lattice parameters.

Cubic a=b=c α=β=γ=90° S, FC, BC

Tetragonal a=b α=β=γ=90° S, BC

Orthorhombic α=β=γ=90° S, FC, BC, BaseC

Rhombohedral (Trigonal) a=b=c α=β=γ=Not 90° S

Hexagonal a=b α=β =90° γ=120° S

Monoclinic α=β =90° S, BaseC

Triclinic S

Primitive Cell (Simple above) = One Lattice Point per cell

Non-Primitive = More than one point per cell

Points per cell = N = Ninterior + Nface/2 + Ncorner/8 + Nedge/4

Figure 2-3 shows Unit Cells.

In  addition  to  classification  according  to  Lattice  Parameters,  crystal  structures  can  be  classified  according  to
symmetry  operations  that  can  be  performed  on  them.  There  are  4  symmetry  operations :

Reflection

Rotation

Inversion

Rotation/Inversion

Figure  2-6  shows  symmetry  elements  for  a  cube  with  some  of  the  symbols  associated  with  these  operations.

Symmetry operations were used to choose the 7 crystal systems above.

A  combination  of  symmetry  operations  and  translations  are  used  to  construct  crystal  systems.  There  are  3
translations commonly used,

Body Centering

Face Centering

Base Centering

Lattice  Directions  and  Planes
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It is important to remember the standard use of brackets in crystallography:

[u,v,w] is a direction (Square brackets)

a bar over u, v or w indicates a negative direction

<uvw> are directions of a form (pointy brackets) this is a class of similar directions

<111>

[111],[111],[111],[111]

(hkl)  are the  miller indices  for a plane. h,k,l are fractional intercepts, 1/u, 1/v, 1/w of a plane with the a,b,c
axies. Actual intercept is a/u, b/v, c/w, Miller indices are fractional intercepts, i. e. intercept divided by magnitude
of a, b, c.

Atomic size and Coordination

XRD  is  a  primary  means  to  determine  atomic  sizes  and  coordination.  Typically,  a  spherical  model  is used for
simple atoms. For space filling spheres in a HCP lattice c/a = 1.633, (occupied volume =74%). 

For typical metals c/a is 1.58 (Beryllium) 1.89 Cadmium. This is interpreted as non-spherical atoms. Atoms must
be ellipsoidal. This is part of how atoms "choose" a crystal system.

For  BCC  ( α -Iron) the closest approach is along the [111] direction, BCC closest approach = aÃ3/2 = 0.866 a.

For FCC closest approach is Ã2/2 a = 0.707 a.

For HCP closest approach in hexagonal plane is a

between atoms in hexagonal plane and next hexagonal plane closest approach is

Ã(a2/3 + c2/4)

From  these  equations  applied  to  atoms  in  different  crystal  structures  several  things  can  be  said,

1) atomic size remains fairly constant in different crystalline structures

2)  atomic  size  has  a  fairly  predictable  change  with  coordination  number  (number  of  nearest  neighbors)

CRYSTAL Coordination Number

FCC or HCP 12

BCC 8

Diamond Cubic 4

In this series diameter decreases by about 3% from FCC/HCP to BCC and by about 9% from BCC to Diamond
Cubic.

Atomic  size  also  changes  slightly  with  the  type  of  bonding  (ionic,  covalent,  metallic,  van  der  Waals)

 

**********************
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**********************

Chain Folding:

The planar zigzag of the olefin or PE molecule crystallize as shown above into an orthogonal unit
cell.  This  unit  cell  can  be  termed  the  first  or  primary  level  of  structure  for  the  olefin  crystal.
Consider  a  metal  crystal  such  as  the  FCC structure of copper. The copper atoms diffuse to the
closest packed crystal planes and the crystal grows in 3-dimensions along low-index crystal faces
until  some  kinetic  feature  interferes  with  growth.  In  a  pure  melt  with  low thermal quench and
careful  control  over  the  growth  front  through  removal  of  the  growing  crystal  from the melt,  a
single crystal can be formed. Generally, for a metal crystal there is no particular limitation which
would lead to asymmetric growth of the crystallite and fairly symmetric crystals result. 

This should be compared with the growth of helical structures such as linear oligomeric olefins,
figure 4.1 on pp. 143 of Strobl. Here there is a natural limitation of growth in the c-axis direction
due to finite chain length. This leads to a strongly preferred c-axis thickness for these oligomers
which increases with chain length. In fact,  a trace of chain length versus crystallite thickness is a
jagged curve due to the differing arrangement of odd and even olefins, but the general progression
is  linear  towards  thicker  crystals  for  longer  chains  until  about  100  mer  units  where  the  curve
plateaus  out  at  a  maximum  value  for  a  given  quench  depth.  (Quench  depth  is  the  difference
between  the  equilibrium  melting  point  for  a  perfect  crystal  and  the  temperature  at  which  the
material is crystallized.)

Schematic  of  olefin  crystallite  thickness  as  a  function  of  the  chain  length.

The point in the curve where the crystallite thickness reaches a plateau value in molecular weight is
close to the molecular weight where chains begin to entangle with each other in the melt and there
is some association between these two phenomena. Also, the fact that this plateau thickness has a
strong  inverse  quench  depth  dependence  suggests  that  there  is  some  entropic  feature  to  this
behavior (pp. 163 eqn. 4.20 where dc is the crystallite thickness and pp. 164 figure 4.18 Strobl). 

Considering a random model for chain structure such as shown in figure 2.5 on pp. 21 as well as
the rotational isomeric state model for formation of the planar zigzag structure in PE, pp. 15 figure
2.2, it  should be clear that entropy favors some bending of the rigid linear structure, and that this
is  allowed,  with  some  energy  penalty  associated  with  gauche  conformation  of  figure  2.2.  Put
another way, for chains of a certain length (Close to the entanglement molecular weight) there is a
high-statistical  probability  that  the  chains  will  bend  even  below  the  crystallization  temperature
where the planar zigzag conformation is preferred for PE. When chains bend there is a local free
energy penalty which must be paid and this can be included in a free energy balance in terms of a
fold-surface energy if it is considered that these bends are locally confined to the crystallite surface
as shown on pp. 161 figure 4.15; and pp. 185 figure 4.34. 

There  are  many  different  crystalline  structures  which  can  be formed under different processing
conditions  for semi-crystalline polymers (Figures 4.2- 4.7 pp. 145 to 149; figure 4.13 pp. 157;
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Figure 4.19, pp. 165; figure 4.21 pp. 170). As a class these variable crystalline forms have only
two universal characteristics:

1 )  Unit  cell  structure  as  discussed  above.

2 )  Relationship  between  lamellar  thickness  and  quench  depth.

This means that understanding the relationship between quench depth and crystallite thickness is
one  of  only  two  concrete features for polymer crystals. John Hoffman was the first to describe
this  relationship  although  his  derivation  of  a  crystallite  thickness  law  borrowed  heavily  on
asymmetric  growth  models  form  low  molecular  weight,  particularly  ceramic  an  metallurgical
systems. Hoffman's law is given in equation 4.23 on pp. 166:

, Hoffman Law

where  n*  is  the  thickness  of  the  equilibrium  crystal  crystallized  at  T  (which  is  below  the
equilibrium  melting  point  for  a  crystal  of  infinite  thickness,  T f

°),  σ is the excess surface free

energy associated with folded chains at the lateral surface of platelet crystals, and ∆H is the heat of
fusion associated with one monomer.

Hoffman's  law  can  be  obtained  very  quickly  for  a  free  energy  balance  following  the
"Gibbs-Thomson  Approach"  (Strobl  pp.  166)  if  on  considers  that  the  crystals  will  form
asymmetrically  due  to  entropically  required  chain  folds  and  that the surface energy for the fold
surface is much higher than that for the c-axis sides.. 

At the equilibrium melting point ∆G° = 0 = ∆H - T° ∆S, so ∆S = ∆H/ T°. 

At  some  temperature,  T,  below  the  equilibrium  melting  point,  The  volumetric  change  in  free
energy  for  crystallization  ∆ f T  =  ∆ H  -  T  ∆ S  =  ∆ H(1  -  T/T ° )  =  ∆ H(T °  -  T)/  T ° .

The  crystallite  crystallized  at  "T"  is  in  equilibrium  with  its  melt  and  this  equilibrium  state  is
adjusted  by  adjusting  the  thickness  of  the  crystallite  using  the  surface  energy,  that  is,

∆GT = 4Rt σside+ 2R2 σ - R2t ∆fT = 0 at T. 

That is,  At T the crystallite of thickness "t" is in equilibrium with its melt and this equilibrium is
determined  by  the  asymmetry  of  the  crystallite,  t/R.  If  ∆ f T  =  ∆ H(T °  -  T)/ T°.  is use in this
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expression,

4t σside+ 2R σ = R t ∆H(T° - T)/ T°.

Assuming that σside <<< σ, and "t"<<<"R" then, 

t = 2 σ T°./( ∆H(T° - T))

which is the Hoffman law.

The  deeper  the  quench,  (T °  -  T),  the thinner the crystal and for a crystal crystallized at T°,  the
crystallite is of infinite thickness. (Crystallization does not occur at T°). 

Hoffman-Weeks Plots for T°

It becomes important to determine certain parameters in the Hoffman approach, first some estimate

of  σ  is  desired  and  this  has  been  done  using  the  rotational  isomeric  state  model  among other
methods.  The  values  which  have  been obtained (mostly by Hoffman and Keller) seem to agree
with crystal thickness measurements.

Second,  a  determination  of  T °  is  critically  important.  This  can  be  obtained  through  the
Hoffman-Weeks plot which is based on the above theory. 

The simplest way to estimate T° is a plot of the melting point, Tm, for crystals whose thickness is
known  from  other  measurements  such as SEM or small angle x-ray scattering (SAXS). Such a
plot will be linear if the Hoffman theory is followed.

This method requires extensive measurements of crystal thickness as well as measurement of the
melting point.

Hoffman-Weeks theory is based on the difference between melting, Tm, and crystallization , Tc,
temperatures.  In  the  Hoffman-Weeks  approach,  it  is  considered  that  any  crystallite  formed  at
temperatures less than T° has some imperfections "locked-in". Generally, the melting temperature
is higher than the crystallization temperature, Tm>Tc. Hoffman and Weeks defined a stabilization
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parameter,  φ' ,  which  is  zero  for  crystallites  with no imperfections and has a value of 1 for an
unstable crystal with all imperfections. For the most stable crystallite Tm = T°. For the completely

unstable  crystallite,  T m  =  T c .  For a typical crystallite, φ'=1/2. Using a simple weighting law,
Hoffman and Weeks wrote a linear expression relating Tm, T° and Tc,

Tm = T°(1- φ') + φ' Tc

This linear law implies plots of Tm versus Tc to obtain T° without requiring a measurement of the
crystallite  thickness.  At  T °  ,  T m  =  T c  =  T °  according  to  this  approach. The Hoffman-Weeks
approach and the more direct approach yield very close values for T°.

Hoffman-Weeks plot for T°.

Nature of the Chain Fold Surface:

In addition to determination of T°, the specific nature of the lamellar interface in terms of molecular
conformation  is  of  critical  importance  to  the  Hoffman  analysis.  There  are  several  limiting
examples, 1) Regular Adjacent Reentry, 2) Switchboard Model (Non-Adjacent Reentry),
3)  Irregular  Adjacent  Reentry  (Thickness  of  interfacial  layer  is  proportional  to  the
temperature). 
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The  synoptic  or  comprehensive  model  involves  interconnection  between  neighboring
lamellae through a combination of adjacent and Switchboard models.

The  interzonal  model  involves  non-adjacent  reentry  but  considers  a  region  at  the  interface
where the chains are not randomly arranged, effectively creating a three phase system, crystalline,
amorphous and interzonal.

Several distinguishing features of the lamellar interfaces are characteristic of each of these models.

Adjacent Uniform and Thin Fold Surface High Surface Energy

Switchboard  Random  chains  at  interface,  Broad  interface,  Low  Surface  Energy

Irregular  Adjacent  Temperature  Dependent  interfacial  thickness  Intermediate  Surface  Energy

Interzonal  Extremely  Broad  and  diffuse  interfaces  with  non-random  interfacial  chains

Synoptic  Interfacial  properties  are  variable  depending  on  state  of  entanglement  and  speed  of
crystallization.

The  Hoffman  equation  states  that  the  lamellar  thickness  is  proportional  to  the
interfacial  energy  so  we  can  say  that  Adjacent  reentry  favors  thicker  lamellae  since  adjacent
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reentry has the highest interfacial energy and the more random interfacial regions should display
thinner lamellae.

When  polymers  crystallize  from  a  relatively  dilute  solution  it  is expected that Regular Adjacent
Reentry  is  a  strong  possibility.  When  crystallization  occurs  from  a  melt,  where  entanglements
dominate,  a  switchboard  reentry  or  synoptic  model  is  expected.  The differences between these
interfacial  conformations  will  have  important  consequences  for  the  lamellar  thickness  since
thickness  should  be  proportional  to  the  interfacial  energy  for  the  fold  surface.

The  nature  of  the  fold  surface  has  been  the  most  debated  topic  in  polymer  crystallography.
Chiefly, Hoffman, Keller and workers at the National Institute of Standards and Technology have
pushed the idea of adjacent reentry as the primary mechanism. This has recently been supported
by atomic force micrographs of adjacent reentry from melt crystallized PE by Abe at the University
of  Akron.  Proponents  of  the  switchboard  model  have  included  Paul  Flory  and  Fischer  in
Germany. Strobl is clearly in favor of less ordered reentry models in our text book and this should
be taken with a grain of salt.  Clearly, the nature of the lamellar interface will vary depending on a
variety  of  conditions  such  as  the  polymer  concentration,  state  of  entanglement,  rate  of
crystallization, molecular weight and other factors. Under ideal conditions where transport is not
particularly important adjacent reentry probably dominates and there is fairly strong evidence for
this  from  the  NIST  groups.  In  processed  materials  where  crystallization  rates  are  fast  and
molecular weights are high, the synoptic model is probably more appropriate. 

Strobl discusses several studies which point to the existence of a fairly wide interlamellar region
consistent with the synoptic model. Figure 4.26 shows Raman spectroscopy data where there is
an  identifiable "transition" or interlamellar band. Transforms of small-angle-x-ray scattering data
show a broad interlamellar region for some samples (figure 4.28) and 2-d, solid state NMR data
shown in figure 4.35 supports correlations between amorphous and crystalline regions indicating
a fairly broad transition region. Much of the evidence presented by Strobl falls in the category of a
selective view of the interfacial region and reflects the deep divides in the field between adjacent
reentry camps and groups which support a more random model.

A  notable  theoretical  addition  to  these  arguments  is  the  so  called  "Gambler's  Ruin"  Model  of
Edward diMarzio (NIST) which basically lead to the development of the Interzonal model from the
Flory camps. di Marzio proved in the Gambler's Ruin papers (Macromolecules circa 1985-90) that
the  switchboard  model  is  not  possible  basically  due  to  density  constraints.  That  is,  it  can  be
proven  that  a  completely  random  amorphous  phase  can  not  directly  connect  to  a  completely
crystalline phase at the chain ends as in the switchboard model since this would require dramatic
and unnatural densities in the interzonal region. Such unnatural densities (in fact a vacuum would
be  created)  have  never  been  observed  experimentally.  The NIST camp considered these papers
theoretical  proof  for  adjacent  reentry.  By  this  time  Flory  himself  was  dead  and  his  group  of
workers  fairly  dispersed.  The  interzonal  model  which  allowed  for  ordering  in the interlamellar
region was a solution to the Gambler's ruin theory proposed in concept by di Marzio. (di Marzio
is  also  known  for his seminal work in glass transition theory and in polymer miscibility among
other contributions.)

Colloidal Scale Structure in Semi-Crystalline Polymers:

Lamellae crystallized in dilute solution by precipitation can form pyramid shaped crystallites which
are essentially single lamellar crystals (figure 4.21 for example). Pyramids form due to chain tilt in
the  lamellae  which leads to a strained crystal if growth proceeds in 2 dimensions only. In some
cases these lamellae (which have an aspect ratio similar to a sheet of paper) can stack although this
is usually a weak feature in solution crystallized polymers. 

Lamellae crystallized from a melt show a dramatically different colloidal morphology as shown in
figure 4.30 pp. 182, 4.13 on pp. 157, 4.7 on pp. 149, 4.6 on pp. 148, 4.4 and 4.5 on pp. 147
and 4.2 on pp. 145. In these micrographs the lamellae tend to stack into fibrillar structures. The
stacking  period  is  usually  extremely  regular  and  this  period  is  called  the  long  period  of the
crystallites.
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The long period is so regular that diffraction occurs from regularly spaced lamellae at very small
angles using x-rays. Small-angle x-ray scattering is a primary technique to describe the colloidal
scale  structure  of  such stacked lamellae. The lamellae are 2-d objects so a small angle pattern is
multiplied by q2 to remove this dimensionality (Lorentzian correction) and the peak position in q is
measured,  q*.  q=  4 π/ λ  sin(θ /2), where θ  is the scattering angle. Bragg's law can be used to

determine  the  long  period, L = 2π/q*. Figure 4.8 on pp. 151 shows such Lorentzian corrected
data.  The  peak  occurs  at  about  0.2  degrees!  In  some  cases  the  x-ray  data  has  been  Fourier
transformed  to  obtain  a  correlation  function  for  the  lamellae  which indicate an average lamellar
profile as shown in figure 4.9 pp. 152. 

The  degree  of  stacking  of  lamellae  would  appear  to  be  a  direct  function  of  the  density  of
crystallization,  i.e.  in  lower  crystallinity  systems  stacking  is  less  prominent,  and  the  extent  of
entanglement  of  the  polymer  chains  in  the melt.  You can think of lamellar stacking as resulting
from a reeling in of the lamellae as chains which bridge different lamellae further crystallize as well
as a consequence of spatial constraints in densely crystallized systems. 

In  melt  crystallized  systems,  many  lamellar stacks tend to nucleate from a single nucleation site
and  grow radially out until  they impinge on other lamellar stacks growing from other nucleation
sites.  The  lamellar  stacks  have  a  dominant  direction  of  growth,  that  is,  they  are  laterally
constrained in extent, so that they form ribbon like fibers. The lateral constraint in melt crystallized
polymers is primarily a consequence of exclusion of impurities from the growing crystallites. 

"Impurities" include a number of things such as dirt,  dust,  chain segments of improper tacticity,
branched  segments,  end-groups  and  other  chain  features  which  can  not  crystallize  at  the
temperature of crystallization. Some of these "Impurities" will crystallize at a lower temperature so
it  is  possible  to  have  secondary  crystallization  occur  in  the  interfibrillar  region.  Despite  the
complexity of the "impurities" it  can be postulated that the impurities display an average diffusion
constant,  D. The Fibrillar growth front displays a linear growth rate, G. Ficks first law states that
the flux of a material,  J,  is equal to the negative of the diffusion constant times the concentration
gradient ∆ c/∆ x. If we make an association between the flux of impurities and the growth rate of

the fibril then Fick's first law can be used to associate a size scale, ∆x with the ratio of D/G. This

approach  can  be  used  to  define  a  parameter  δ ,  which  is  known  as  the  Keith  and  Padden

δ-parameter, δ = D/G. This rule implies that faster growth rate will lead to narrower fibrils. Also,
the inclusion of high molecular weight impurities, which have a high diffusion constant, D, leads
to  wider  fibrils.  There  is  extensive, albeit qualitative, data supporting the Keith and Padden del
parameter  approach  to  describe  the  coarseness  of  spherulitic  growth  in  this  respect.
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Branching of Fibrils: Dendrites versus Spherulites.

Low  molecular  weight  materials  such  as  water  can grow in dendrite crystalline habits which in
someway  resemble  polymer  spherulites  (collections of fibrillar crystallites which emerge from a
nucleation site). One major qualitative difference is that dendritic crystalline habits are very loose
structures while spherulitic structures, such as shown in Strobl, fill space in dense branching. At
first this difference might seem to be qualitative. 

In low-molecular weight materials such as snowflakes or ice crystallites branching always occurs
along  low  index  crystallographic  planes  (low  Miller  indices).  In  spherulitic  growth  there is no
relationship  between  the  crystallographic  planes  and  the  direction  of  branching.  It  has  been
proposed  that  this  may  be  related  to  twinning  phenomena  or  to  epitaxial  nucleation  of  a  new
lamellar  crystallite  on  the  surface  of  an  existing  lamellae.  A  definitive  reason  for
non-crystallographic  branching  in  polymer  spherulites  has  not  been  determined  but  it
remains a distinguishing feature between spherulites and dendrites. 

(Incidentally,  the  growth  of  dendrites  can  occur  due  to  similar  impurity  transport
issues  as  the  growth  of  fibrillar  habits  in  polymers.  In  some  cases  a  similar
mechanism  has  been  proposed  where  rather  than  impurity  diffusion,  the  asymmetric
growth  is  caused  by  thermal  transport  as  heat  is  built  up  following  the  arrows
in  the  diagram  on  the  previous  page.)

Non-crystallographic branching leads to the extremely dense fibrillar growth seen in figures 4.4 to
4.7  of  Strobl.  In  the  absence  of  non-crystallographic  branching,  many  of  the  mechanical
properties  of  semi-crystalline  polymers  would  not  be  possible.  As  was  mentioned  above,
non-crystallographic  branching  may  be  related  to  the  high  asymmetry  and  the  associated  high
surface area of the chain fold surface which serves as a likely site for nucleation of new lamellae as
will  be  discussed  in  detail  below  in  the  context  of  Hoffman/Lauritzen  theory.

The  formation  of  polymer  spherulites  requires  two  essential  features  as
detailed  by  Keith  and  Padden  in  1964  from  a  wide  range  of
micrographic  studies:

1 )  Fibrillar  growth  habits.

2 )  Low  angle,  Non-crystallographic  branching.

Polymer Spherulites.

Figure  4.2  pp.  145  shows  a  typical  melt  crystallize  spherulitic  structure  which  forms  in  most
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semi-crystalline  polymeric  systems.  The  micrographs  in  figure  4.2  are  taken  between  crossed
polars  and  the  characteristic Maltese Cross  is observed and described on the following page.
The Maltese cross is an indication of radial symmetry to the lamellae in the spherulite, supporting
fibrillar  growth,  low  angle  branching  and  nucleation  at  the  center  of  the  spherulite.  In  some
systems,  especially  blends of non-crystallizable and crystallizable polymers, extremely repetitive
banding is observed in spherulites as a strong feature, figure 4.7 pp. 149. Banding is especially
prominent in tactic/atactic blends of polyesters and it is in these systems in which it has been most
studied.  It  has  been  proposed  by  Keith  that  banding  is  related  to  regular  twisting  of  lamellar
bundles in the spherulite (circa 1980). Keith has proposed that this twisting is induced by surface
tension in the fold surface caused by chain tilt in the lamellae (circa 1989). Since most spherulites
crystallize  in an extremely dense manner it  has been difficult to support Keith's hypothesis with
experimental  data.  Regular  banding  has,  apparently,  no  consequences  for  the  mechanical
properties  of  semi-crystalline  polymers  so  has  been  essentially  ignored  in  recent  literature.

Spherulitic Growth Rate versus Quench Depth.

By careful observation in an optical microscope it  is possible to measure the linear growth rate of
spherulitic crystals in a polymer at various quench depths (∆ T = T° -  Tc). At low undercoolings
the  growth  rate  is  slow since the thermodynamic driving force for crystallization is low. As the
quench depth is increased the growth rate increases, reaches a maximum at about 50° below T° and
then monotonically decays with quench depth. This type behavior is shown in figure 4.16 pp. 162
and is characteristic of many materials. Similar curves can be obtained by careful thermal analysis.

u (T) = k (Transport (T)) (Growth driving force (T))

 

The left size of the plot of growth rated versus quench depth is governed by transport through an
exponential function for the diffusion coefficient, 

D = k e-∆F*/RT

where  ∆ F*  is  a  negative  activation  barrier  for  thermal  transport which could be based on free
volume  concepts  for  instance.  In  systems  which  display  a  glass  transition  temperature  this
exponential  will  follow  the  Vogel-Fulcher  or  WLF  dependence  which  Strobl gives as equation
4.17 pp. 162, 

Flux Å k exp(-TA/(T - TV))

Where  T A  is  an  activation  temperature  (1000-2000°K)  and  T V is related to the glass transition
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temperature (usually somewhat lower than the measured Tg).

The thermodynamic driving force for crystallization was given above as ∆ fT = ∆ H(T° - T)/ T°.,
which yields a rate law proportional to exp(-B/( T° -  T)). On the bottom of pp. 162 Strobl gives
equation 4.19 which predicts the thermal dependence of linear growth rate, 

u Å exp(-TA/(T-TV)) exp(-B/( T° - T))

This  equation  is  symmetric  about  a  maximum  since  both  exponential  terms  have similar form.

Lamellar  growth  in  polymer  crystals  has  several  features  which  distinguish  it  from  crystalline
growth in low molecular weight materials. First, the highest surface energy surface, (fold surface)
is  not  the surface of maximum growth since the chains are not in the proper helical form at this
interface  by  definition.  In  low-molecular  weight  materials,  secondary  nucleation  rates  and
substrate  completion  rates  are  comparable. This is not always the case for polymer crystals and
this  fact  has  lead  to  the  development of a regime approach to describe the linear growth rate of
polymer lamellae. 

Hoffman-Lauritzen Theory for Linear Growth Rate (1973): 

The figure below shows a schematic of the two competing factors which govern the linear rate of
crystallization for a polymer lamellar crystal. The direction of crystal growth is up. The rate of this
linear growth, u, is governed by the rate of nucleation (secondary nucleation) on the lateral surface
of the growing lamellae, i, and the rate of completion of the substrate layer, g. 

From  the  relative  magnitudes  of  "i"  and  "g"  Hoffman  predicted  several  regimes  of  crystalline
growth for spherulitic polymers. Hoffman defined three basic regimes:

Regime  I:  i<<g,  this  is  nucleation  dominated  secondary  crystalline  growth.

Regime II: i Å g, Two rates are comparable. 

Regime III: i>>g, Many nuclei lead to disordered crystal growth.

These three regimes of growth, defined by Hoffman, will be discussed in some detail as they form the basis for
much of the current literature in polymer crystallization.

Regime I Growth: (Shallow quench => Axialites)

i<<g

In regime I a single surface nucleus forms which is called a "Stem". The linear growth rate, GI, depends on the rate
of deposition of stems, "i",

GI = b0 i L = b0 a0 ns i
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a0 is the chain width, b0 is the layer thickness, i.e. the lamellar crystallite thickness, t, ns is the number of stems in
a layer. The assumption being that when one stem is nucleated the entire layer of nS stems is almost immediately
completed relative to the nucleation rate, i. The length of a layer is L = a0 nS.

The rate of deposition of the stem, i, depends on the transport of a stem to the surface and the nucleation constant,
KG(I),

GI = CI exp(-Q*D/RT) exp(+K G(I)/T(∆T))

where Q*D is the activation energy for reptation of the chain to the crystalline surface. CI is inversely related to
molecular weight.

Regime II Growth: (Deep quench => Spherulites)

In Regime II Multiple surface nuclei form since i Å g. The growth rate is given by,

GII = b0 (2 i g)1/2

The separation distance for stems is given by the ratio of g to i (g can occur in two directions),

Sn = 1/Nk = (2g/i)1/2

where Nk is the number of stems per distance.

Regime II is the normal condition for spherulitic growth. It has a weaker ∆T dependence than regime I.

lnGII Å 1/2 ln GI

The latter gives a signature of regime I to regime II transition and has been used as evidence for the validity of the
Hoffman approach.

Regime III Growth: (Very deep quench => distorted spherulitic like structures)

In regime III, Sk goes to a0! i>>g, the surface is completed by nuclei with little growth along the surface. The
growth rate is given by,

GIII = b0 i L = b0 i nS a0

In regime III there are certainly few chain folds. 

The log of GIII has the same slope in log temperature as that of GI and these slopes are used as an indicator of these
regime transitions as discussed below.

Morphological Consequences of the Regime Approach:

The  regime  approach  can  be  used  as  a  tool  to  qualitatively  consider  morphological  changes  which  have  been
observed with quench depth. 

In Regime I, substrate completion is a slow and ordered process which allows time for transport of chains to the
growing surface. It  is qualitatively expected that chain folding will be of the adjacent reentry type in such a slow,
controlled process. This means that lamellae will,  most likely, have few synoptic connections which are necessary
for well stacked lamellae and a fibrous growth motif. Additionally, the absence of tie chains between lamellae might
be  expected to hinder significant epitaxial nucleation, interfering with low-angle, non-crystallographic branching.
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For these reasons it  might be expected that Regime I growth would not lead to good spherulitic growth and this is
strongly supported by microscopic observation. 

In  Regime  II,  crystallization  occurs  with  some  synoptic  connections  between  lamellae  since  a  multiple seeding
situation  necessarily  leads  to  dangling  chains  where growth fronts meet. These connections ensure that lamellae
will be well stacked and offer and opportunity for epitaxial nucleation and extensive low-angle branching required
for good spherulitic growth.

In Regime III,  substrate completion is dominated by nucleation events and few regular chain folds occur. Lamellae
are disorganized and have many defects under these conditions. This leads to distorted crystalline structures which
do not produce good spherulitic structures.

Growth Rate Signature of the three Regimes:

Hoffman described an approach whereby the three growth regimes could be distinguished from growth rate versus
isothermal  crystallization  temperature  data.  He  first  wrote  a  generic  equation  for  the  linear  growth  rate  which
included a transport term (later based on reptation) and a free energy term:

where  the  first  exponential  is  a transport term and the second exponential is a thermodynamic growth rate term.
Taking the logarithm of both sides of this equation suggests a plotting scheme if the transport term can be measured
in an independent experiment,
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Plots of the log of growth rate minus the transport constant (which can be independently determined) versus 1/T(T°
-T) will yield the growth constant Kg. For Regime I, Kg is proportional to ln(i), for Regime II, to 1/2 ln(i) and for
Regime III,  to ln(i) since g is proportional to i  in all cases. The slope of this reduced growth rate curve will be the
same in Regime I and Regime III but will be 1/2 of the Regime I slope in Regime II. The prefactor is different for
the three regimes,

Problems with Regime Approach:

1) The Regime theory predicts rather sharp transitions between the growth rate in different regimes yet data shows
more gradual transitions.

2)  It  is  difficult to observe regimes since: a) Crystallization is too slow in Regimes I and III,  deep quenches are
difficult  to  achieve  instantaneously,  i.e.  without  going  through  some  crystallization  in  Regime  II,  Rate  of
crystallization is very slow in Regime I (and III). 

3)  The  analysis  shown  in  the graph above relies on a good knowledge of the transport term and its temperature
dependence.  There  is  debate  over  the  proper  values  to  use  for  this  transport  term  as  it  involve  polymer
self-diffusion which is difficult to measure.

Avrami Analysis for Spherulitic Growth Rate:

The rate of phase growth in most systems typically follows a scaled exponential rate law which was first proposed
by Avrami. A scaled exponential rate law is exponential of time raised to some (usually non-integral) power. The
Avrami  equation  is  quite  general  for  growth  of  phases,  and  has  been adopted to describe spherulitic growth in
polymers. Strobl shows a number of exponential growth curves in figure 4.14 on pp. 159, a schematic of which is
shown below,
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The Avrami Equation is given by,

φc(t) =1 - exp(-ktm) Strobl equation 4.15 pp. 160

The  parameter  "k"  and  the power "m" can be calculated for  certain model  conditions of  growth.  The Avrami plot  involves  a  double
log/log plot of volume fraction versus time,

ln(ln φc(t)) = m ln(t) + ln k

and results in a linear plot of slope m and extrapolated intercept ln(k).

The Avrami approach is based on two assumptions:

1) Growth is linear in time and a constant linear growth rate is observed, dr/dt.

2) Growth is diffusion limited rather than nucleation limited.

There are two main choices which determine the Avrami parameters "m" and "k" under these assumptions. 

1) Is nucleation spontaneous (growth all starts at the same time, number of nuclei = N) or sporadic (growth starts at a constant rate,
dN/dt)

2)  What  is  the  dimension  of  growth,  1-d  like  a  fiber  or  rod,  2-d  like  a  disk  or  platelet,  3-d  spherical  growth.

Consider a condition of spontaneous nucleation, N nuclei, with 2-d growth at a rate dr/dt. Growth 
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fronts  travel a distance rt = t dr/dt in time t. Consider a point x in the nucleating bath. The average number of growth fronts which cross

point  "x" at  time "t", <F> is the area fraction of the disk phase, N Ac where N is now the number per area of nucleation sites and Ac is

the area of one disk phase. This is given by,

<F> = N π (rt)
2 = N π (t dr/dt)2

The number of growth fronts which cross the point x can be described by a Poisson distribution since the crossing
of "x" is a random phenomena for randomly placed nuclei,

p(F) = exp(-<F>) <F>F/F!

This function describes the probability that a certain number of fronts have crossed a point x, i.e. the probability for
F  =  0 is the probability that no fronts have crossed or the probability that the point x is amorphous in this case.
p(F=0) can then be related to the amorphous fraction or 1 - φc,

p(F=0) = exp(-<F>) = (1 - φc)

The expression for <F> can now be used to determine "m" and "k" for this condition,

φc = 1 - exp(-N π (t dr/dt)2)

The Avrami exponent, m = 2 for spontaneous nucleation of 2-d domains. For 1-d domains the exponent is 1 and
for 3-d domains the exponent is 3. The constant k = N π (dr/dt)2 for 2-d growth and analogous expressions can be
obtained for other dimensional growths.

For  sporadic  nucleation ,  at  a  rate  dN/dt,  a  similar  approach  can  be  used.  Consider  a  differential  ring  of
thickness  dr  around the point x, considered previously, at a distance r from x. The differential number of fronts
crossing x at time t, dF, is given by

dF("t" or "r") = (Area of the "dr" ring) (area fraction rate of nuclei production) (Differential time span associated
with "dr")

= (2πrdr) (dN/dt) (t - r/(dr/dt))
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The average number of fronts which cross x at time "t" is given by,

This means that m = 3 for sporadic nucleation and 2-d growth and k = π (dN/dt) (dr/dt)2/3. Sporadic nucleation
adds one to the Avrami exponent for the dimensional cases listed above.

There  are  many  problems  with  the  Avrami  analysis  and  a  few  of  these  are  listed  below,

1)  It  is  difficult  to  distinguish  between  dimensional effects and nucleation type effects.  Often systems are much
more complicated than the models discussed above.

2)  Non-integral  Avrami  exponents  are  the  norm  and  these  do  not  have  a  simple  explanation.

3)  Any  thing  looks  linear  in  a  log-log  plot  over  a  narrow  range  and  a  double  log  plot  is  even  worse.

4) Power-law analysis requires a significant range of t  (many decades) which are not available in almost any real
cases. 

5) Strobl notes some other deficiencies on pp. 160.
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