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Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials

Brittle materials are materials that display Hookean behavior (linear relationship between stress
and strain) and which fail at a discrete strain.  Plastic materials display a variety of yielding
behaviors associated with changes in the internal structure of the material at a fixed level of
strain and at a fixed rate of strain.  The time dependence to yielding behavior is due to the
structural changes that must occur in order for the material to yield.  Then an understanding of
yielding in plastic materials requires a detailed understanding of the microstructure of a material
and the mechanisms available to the microstructure to deform and absorb energy.  A ductile
material displays a simple plastic yielding behavior characterized by a gradual and non-discrete
reduction in the slope of the stress strain curve.  Ductile yielding can not be recovered by release
of the stress, that is, it is a permanent deformation.  Ductile behavior is observed for simple metal
microstructures such as aluminum and is used for cold drawing of metals.  Several simple
continuum models (ignoring microstructure) have been proposed to predict (not understand)
yielding behavior in simple ductile materials.

Von Mises' Criterion:

The stress applied to a material can be broken into the hydrostatic pressure and the deviatory
stress, σ'ij,
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Since yield is a bulk property not associated with the coordinate frame we can consider that a
yield criterion could be based on the invariants of the deviatory stress.  The deviatory stress has 3
invariants, J1, J2 and J3.  The first is related to the hydrostatic stress which is probably not
associated with yield.  A simple model might involve the second invariant only.  This is the
approach of the Von Mises' yield criterion.

J2 =
1

6
σ1 − σ2( )2 + σ2 − σ3( )2 + σ3 −σ1( )2[ ] = k2   ,

written in terms of the principle stresses and where k is a constant.  When J2 exceeds k2 yielding
occurs.  In uniaxial tension σ1 = s and σ2= σ3=0 so,

σ0 = 3( )k
Tresca Criterion:
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Another approach is to consider that yielding is associated with shear stress.  The maximum
shear stress can be calculated from the principle stresses where 1 is the largest and 3 the smallest
principle stress,

τ max =
σ1 − σ3

2
=

σ0

2
= k

where σ0 is for uniaxial tension and k is a constant above which yield occurs.

This can be written in terms of both the second and third invariant of the deviatory stress in a
messy expression.

Brittle Fracture of Materials:

A materials fractures when two new surfaces are created under tension, for instance.  On a
atomic scale fracture requires the separation of atoms or molecules in the bulk solid.  We can
begin a consideration of fracture by considering the energy, cohesive energy, that holds a solid
together at the atomic level.  Atoms are held at a fixed distance because there is a repulsive
component of cohesive energy associated with atoms approaching each other and an attractive
component of cohesive energy associated with atoms being separated.  The force on an atom is a
combination of these repulsive and attractive forces that offset each other at the average atomic
separation distance, a0.  In order for two new surfaces to form the attractive part of the cohesive
energy must be overcome by a tensile load.  If we assume that the cohesive force on an atom can
be represented by a sin curve then,

σ =σ max sin
2πx

λ
≈σ max

2πx

λ
=

Ex

a0

where λ is the repeat distance for atoms, x is the displacement, a - a0, E is the elastic modulus
and σmax is the maximum in the cohesive force that holds an atom at a fixed location by a balance
of attractive and repulsive forces. σmax is associated with the maximum possible strength for a
material,

σmax =
Eλ

2πa0

≈
E

π

where the latter equality assumes λ = 2 a0.

The net energy change, U0, in brittle failure is associated with the formation of two new surfaces
with a surface energy γs.  This can be equated with the area under the stress displacment curve,
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U0 = σ max sin
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This yields a fracture strength that is generally 10 to 100 times the observed fracture strength for
most materials.  Defect free materials approach this theoretical strength, i.e. small fibers or nano-
crystals.   For the vast majority of materials brittle failure is associated with innate flaws that
produce small cracks.  The stress concentration associated with such a flaw leads to brittle failure
in all commonly encountered brittle materials.

Consider a crack of length 2c with a rounded tip with a tip radius of curvature of ρ.  For an
elliptical crack the stress concentration leads to a maximum stress at the tip of the elliptical hole
in a flat sheet of infinite width,
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The fracture stress for the bulk material can be calculated based on the native flaw size, 2c, and
the curvature of the native flaw tip, ρ, and assuming that crack propagation occurs when the
concentrated stress at the crack tip exceeds the material's theoretical fracture strength (above),
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where the latter equality assumed that the smallest crack tip radius is on the order of the atomic
spacing, a0.

Griffith Theory for Brittle Fracture:

When a material is strained the integral under the stress strain curve yields the elastic strain
energy.  Failure of the material could be thought of as resulting from a conversion of this elastic
strain energy to the formation of two new surfaces with surface energy γs.  Griffith theory
assumes that native flaws exist in a material and calculates the stress necessary for the growth of
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these flaws to cracks and to failure based on this energy balance between elastic strain energy
and surface energy.

For a crack of length 2c in a thin plate (plane stress) the change in strain energy associated with
the formation of a crack is given by,

UE = −
πc2σ 2

E

The surface energy created by the crack is given by,

Us = 4cγ s

Then the change in energy associated with the presence of a crack is given by,

∆U =U s + UE = 4cγ s −
πc2σ 2

E

we set the derivative of this change in energy with respect to the crack length, c, to 0 in order to
find the equilibrium state for a crack of length c,

d∆U
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For a 3-d sample under tensile stress the Griffith equation can be modified,
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The scaling form of the Griffith equation is, for the most part, considered generally applicable to
brittle Hookean materials,
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So we can say, for instance, that increasing the modulus by a factor of 4 increases the fracture
strength by a factor of 2 or reduction in the surface energy by a factor of 4 reduces the fracture
strength by a factor of 2.  The latter is commonly used to enhance fracture in glasses, e.g. to
break a glass rod you would score the rod and apply water to reduce the surface energy at the
score tip.
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Plastic Deformation in Brittle Failure:

Metals and plastics generally display significant plastic (non-reversible) deformation at the crack
tip that is not accounted for in the Griffith equation.  The simplest approach to modification of
the Griffith equation for plastic deformation is to include a constant, γp, that linearly adds to the
surface energy term and accounts for a constant amount of plastic deformation per unit of created
surface area in crack growth,
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where intermediate equality indicates that the plastic deformation energy is generally much
larger than the surface energy.  The latter expression is due to Irwin and Gc is the "critical value
of the crack extension force" and a is a more common term for half the crack length referred to
as c in the previous discussion,

G =
πaσ 2

E

G is also called "the strain-energy release rate" since it reflects the rate of transfer of energy from
elastic deformation to irreversible deformation of the material at the crack tip as the crack grows.
Gc is also called the fracture toughness, i.e. the strain-energy release rate at failure where failure
is defined as growth of a crack.  G can be determined by measurements of crack propagation
under stress.

From Dieter.

The stress distribution at the crack tip shown in Dieter's figure 11-2 is given by,
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where θ is the angle in the plane of the sample off the crack axis.  For θ = 0,
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  and τ xy = 0

The stress intensity factor, K,  is the enhancement at the crack tip of the tensile stress applied
normal to the crack, for a sharp flaw in an infinite plate K = σ√(πa).  The stress distribution is
usually expressed in terms of this stress intensity factor, K,
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Expressions for the stress intensity factor, K, for various geometries are given in texts dealing
with fracture toughness and some expressions are available in Dieter for instance.

The figure below shows various modes of deformation that could be used to propagate a crack.
The most common is mode I and the critical stress intensity factor calculated for this mode
would be called KIc.
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From Dieter.

The stress intensity factor, K, is directly related to the strain energy release rate, G,

K 2 = GE  for plane stress

K 2 = GE

1−υ 2( )   for plane strain

Plastic Zone at a Crack Tip:

The region at the tip of a crack is subject to ductile yielding in both polymers and metals.  We
can consider the yield stress, σ0, as defining plastic zone at the crack tip.  The details of yielding
depend on the type of material and the microstructure but some generalities can be made.
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From Dieter.

The figure above from Dieter shows stress as a function of the distance from a crack tip.  In the
direction θ = 0 and for the yield stress we have,
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so rp = K2

2πσ 0
2

= aσ 2

2σ0
2

  for plane stress

The dashed curve in the figure.  The solid curve accounts for elastic and plastic deformation.
The radius of the plastic zone is sometimes added to the crack length, a, to obtain an effective
crack length for calculation of the stress intensity factor, K.

For plane strain the plastic zone is calculated as,

rp =
K 2

6πσ0
2 plane strain

due to differences in the strain field.

The Irwin model, presented above, assumes the plastic zone is spherical or circular and this is
clearly not the case.  The approach can be refined for a more realistic slit shaped plastic zone,
shown below, using the Dugdale model.  The Dugdale model includes compressive stresses that
act to close the plastic zone, shown in the figure.  The plastic zone size in the Dugdale approach
is  given by,
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Extensive Plastic Deformation, rp ~ a:

Form many materials, such as aluminum and polymers, the plastic zone is of comparable size to
the original crack.  In these cases the perturbative approaches presented above are of less use
except as a starting point for consideration.  A detailed consideration and a model for the
mechanical behavior in the plastic zone is needed and extensive work has been done in this
regard.  The simplest of these models involves considering the plastic zone as composed of a
series of fibers which bridge the plastic zone.  Such a morphology actually exists in polymer
crazes which are the dominant form of cracks in polymers.  The fibers have a length l and a
width w.  l is determined by the radius of the crack tip, l = 2 ρ, the width is a material feature.
For this crack-tip displacement model, crack growth involves failure of these fibers in sequence
from the center of the crack outwards.  For one of these fibers the deformation of the fiber in
length, δ, is given by the bulk sample strain, ε,

δ =εl = 2ρε

Failure of the material occurs at εf, where the fiber displacement reaches a critical value,

δc = 2ρε f

The crack opening displacement model leads to a relationship between the fiber displacement
and the strain-energy release rate, G,

G = σ 0δ
and

GIc = λσ0δ c

where λ is on the order of 1 and depends on the extent of the plastic zone.
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J-Integral Method:

The strain-energy release rate for a crack regardless of its degree of plasticity can be determined
by considering a line integral of the strain energy per unit volume summed with the integral of
the normal stress acting on the contour of the line integral, see figure below from Dieter.

J = Wdy −T
∂u

∂x
ds
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Γ is the integral path around the crack

T is the normal stress on the integral path

u is the bulk sample displacement

ds is a part of the path

T
∂u
∂x

ds is the rate of work in the area enclosed by Γ

If the J integral reaches a critical value failure occurs.  For example values of JIc are commonly
tabulated for materials.  The J integral is path independent so a path along the sample boundary
can be used making analytic measurement of the J integral a common method in failure analysis.
Dieter gives detailed descriptions of ASTM methods for determination of the J integral.

Consider two samples that are strained to slightly different extents with slightly different crack
lengths, a.  The J integral for this material is equal to the potential energy difference between the
two specimens divided by the difference in crack length,

J =
∂U0

∂a
= G =

K2

E '

where E' is defined depending on the sample geometry,
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E '= E  for plane stress (thick tensile sample)

E '= E

1−υ 2( )  for plane strain (thin tensile sample)

The figure below illustrates this view of the J integral in a load displacement curve from Dieter,

Dynamics of Failure in Viscoelastic Materials:

Failure is by nature a dynamic process.  That is, failure occurs while a sample is being loaded at
some rate.  The considerations given above assume that the rate of deformation have little to do
with failure since the time constant associated with failure is assumed to be much smaller than
the inverse of the strain rate.  This is true of many materials.  It is not true of most viscoelastic
materials that display relaxation times on the order of or larger than the inverse of common strain
rates.  The rate dependence, for a viscoelastic material following Arrhenius or WLF behavior,
translates into a strong temperature dependence for the failure behavior of viscoelastic materials.
Details of this behavior will be discussed in the next section.


