Yield Criteriafor Ductile Materials and Fracture Mechanics of Brittle Materials

Brittle materials are materials that display Hookean behavior (linear relationship between stress
and strain) and which fail at adiscrete strain. Plastic materials display a variety of yielding
behaviors associated with changes in the internal structure of the material at afixed level of
strain and at afixed rate of strain. The time dependence to yielding behavior is due to the
structural changes that must occur in order for the material to yield. Then an understanding of
yielding in plastic materials requires a detailed understanding of the microstructure of a material
and the mechanisms availabl e to the microstructure to deform and absorb energy. A ductile
material displays asimple plastic yielding behavior characterized by a gradual and non-discrete
reduction in the slope of the stress strain curve. Ductile yielding can not be recovered by release
of the stress, that is, it is a permanent deformation. Ductile behavior is observed for simple metal
microstructures such as aluminum and is used for cold drawing of metals. Several ssimple
continuum models (ignoring microstructure) have been proposed to predict (not understand)
yielding behavior in simple ductile materials.

Von Mises Criterion:

The stress applied to amaterial can be broken into the hydrostatic pressure and the deviatory
stress, s';,

&s, -s,-S, o}
¢ 3 Eo Lr +
2S,-S,-S
v _C y X z -
S”_g t, 3 t, ;—s”-spd”
¢ ; 25,-5,-S,.
e “ 7 3 2

Sinceyield is abulk property not associated with the coordinate frame we can consider that a
yield criterion could be based on the invariants of the deviatory stress. The deviatory stress has 3
invariants, J;, J, and J,. Thefirst isrelated to the hydrostatic stress which is probably not
associated with yield. A simple model might involve the second invariant only. Thisisthe
approach of the Von Mises' yield criterion.
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written in terms of the principle stresses and where k is a constant. When J, exceeds k? yielding
occurs. Inuniaxia tension s, =sand s,= s,=0 so,

S,= (\/E)k

Tresca Criterion:



Another approach isto consider that yielding is associated with shear stress. The maximum
shear stress can be calculated from the principle stresses where 1 isthe largest and 3 the smallest
principle stress,
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where s, isfor uniaxial tension and k is a constant above which yield occurs.

This can be written in terms of both the second and third invariant of the deviatory stressin a
messy expression.

Brittle Fracture of Materials:

A materials fractures when two new surfaces are created under tension, for instance. On a
atomic scale fracture requires the separation of atoms or molecules in the bulk solid. We can
begin a consideration of fracture by considering the energy, cohesive energy, that holds a solid
together at the atomic level. Atoms are held at a fixed distance because there is arepulsive
component of cohesive energy associated with atoms approaching each other and an attractive
component of cohesive energy associated with atoms being separated. The force on an atomisa
combination of these repulsive and attractive forces that offset each other at the average atomic
separation distance, a,. In order for two new surfaces to form the attractive part of the cohesive
energy must be overcome by atensile load. If we assume that the cohesive force on an atom can
be represented by a sin curve then,

2
S =S maxsnﬂ( »S max@:&
I I a,

where| isthe repeat distance for atoms, x is the displacement, a- &, E is the elastic modulus
and s, is the maximum in the cohesive force that holds an atom at a fixed location by a balance
of attractive and repulsive forces. s, is associated with the maximum possible strength for a
material,
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where the latter equality assumes| =2 g,

The net energy change, U,, in brittle failure is associated with the formation of two new surfaces
with asurface energy g.. This can be equated with the area under the stress displacment curve,
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Thisyields afracture strength that is generally 10 to 100 times the observed fracture strength for
most materials. Defect free materials approach this theoretical strength, i.e. small fibers or nano-
crystals. For the vast majority of materials brittle failure is associated with innate flaws that
produce small cracks. The stress concentration associated with such aflaw leads to brittle failure
in all commonly encountered brittle materials.

Consider acrack of length 2c with arounded tip with atip radius of curvature of r. For an
elliptical crack the stress concentration leads to a maximum stress at the tip of the elliptical hole
in aflat sheet of infinite width,
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which reducesto 3s for acircular hole. For acrack asimilar function can be derived,
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The fracture stress for the bulk material can be calculated based on the native flaw size, 2c, and
the curvature of the native flaw tip, r, and assuming that crack propagation occurs when the
concentrated stress at the crack tip exceeds the material's theoretical fracture strength (above),
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where the latter equality assumed that the smallest crack tip radiusis on the order of the atomic
spacing, &.

Griffith Theory for Brittle Fracture:

When a material is strained the integral under the stress strain curve yields the elastic strain
energy. Failure of the materia could be thought of as resulting from a conversion of this elastic
strain energy to the formation of two new surfaces with surface energy g.. Griffith theory
assumes that native flaws exist in amaterial and cal culates the stress necessary for the growth of



these flaws to cracks and to failure based on this energy balance between elastic strain energy
and surface energy.

For acrack of length 2c in athin plate (plane stress) the change in strain energy associated with
the formation of acrack is given by,
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The surface energy created by the crack is given by,
U, = 4cg;
Then the change in energy associated with the presence of a crack is given by,
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we set the derivative of this change in energy with respect to the crack length, c, to 0 in order to
find the equilibrium state for a crack of length c,

For a 3-d sample under tensile stress the Griffith equation can be modified,
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The scaling form of the Griffith equation is, for the most part, considered generally applicable to
brittle Hookean materials,
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So we can say, for instance, that increasing the modulus by afactor of 4 increases the fracture
strength by afactor of 2 or reduction in the surface energy by afactor of 4 reduces the fracture
strength by afactor of 2. The latter is commonly used to enhance fracture in glasses, e.g. to
break a glass rod you would score the rod and apply water to reduce the surface energy at the
score tip.



Plastic Defor mation in Brittle Failure:

Metals and plastics generally display significant plastic (non-reversible) deformation at the crack
tip that is not accounted for in the Griffith equation. The simplest approach to modification of
the Griffith equation for plastic deformation is to include a constant, g,, that linearly adds to the
surface energy term and accounts for a constant amount of plastic deformation per unit of created
surface areain crack growth,
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where intermediate equality indicates that the plastic deformation energy is generally much
larger than the surface energy. The latter expression is due to Irwin and G, isthe "critical value
of the crack extension force" and ais a more common term for half the crack length referred to
as c in the previous discussion,
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G isalso called "the strain-energy release rate” since it reflects the rate of transfer of energy from
elastic deformation to irreversible deformation of the material at the crack tip as the crack grows.
G, isalso called the fracture toughness, i.e. the strain-energy release rate at failure where failure
Is defined as growth of acrack. G can be determined by measurements of crack propagation
under stress.

Figure 11-2 Model for equations for stresses at a point

near a cruck.

From Dieter.

The stress distribution at the crack tip shown in Dieter's figure 11-2 is given by,
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where q isthe angle in the plane of the sample off the crack axis. For g =0,
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The stressintensity factor, K, isthe enhancement at the crack tip of the tensile stress applied
normal to the crack, for a sharp flaw in an infinite plate K = s((pa). The stress distribution is
usually expressed in terms of this stress intensity factor, K,
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Expressions for the stress intensity factor, K, for various geometries are given in texts dealing
with fracture toughness and some expressions are available in Dieter for instance.

The figure below shows various modes of deformation that could be used to propagate a crack.
The most common is mode | and the critical stress intensity factor calculated for this mode
would be called K,...
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From Dieter.

The stress intensity factor, K, is directly related to the strain energy release rate, G,

K ?= GE for plane stress
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Plastic Zoneat a Crack Tip:

Theregion at the tip of a crack is subject to ductile yielding in both polymers and metals. We
can consider theyield stress, s, as defining plastic zone at the crack tip. The details of yielding
depend on the type of material and the microstructure but some generalities can be made.
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Figure 11-10 Estimation of plastic zone
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From Dieter.

The figure above from Dieter shows stress as a function of the distance from a crack tip. Inthe
direction g = 0 and for the yield stress we have,
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The dashed curve in thefigure. The solid curve accounts for elastic and plastic deformation.
The radius of the plastic zone is sometimes added to the crack length, a, to obtain an effective
crack length for calculation of the stress intensity factor, K.

For plane strain the plastic zone is calculated as,
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due to differencesin the strain field.

The Irwin model, presented above, assumes the plastic zoneis spherical or circular and thisis
clearly not the case. The approach can be refined for amore realistic dlit shaped plastic zone,
shown below, using the Dugdale model. The Dugdale model includes compressive stresses that
act to close the plastic zone, shown in the figure. The plastic zone size in the Dugdal e approach
IS given by,
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Extensive Plastic Deformation, r, ~ a:

Form many materials, such as aluminum and polymers, the plastic zone is of comparable size to
the original crack. In these cases the perturbative approaches presented above are of less use
except as a starting point for consideration. A detailed consideration and a model for the
mechanical behavior in the plastic zone is needed and extensive work has been donein this
regard. The simplest of these models involves considering the plastic zone as composed of a
series of fibers which bridge the plastic zone. Such a morphology actually exists in polymer
crazes which are the dominant form of cracksin polymers. Thefibershavealength| and a
width w. | isdetermined by the radius of the crack tip, | = 2r, the width isamaterial feature.
For this crack-tip displacement model, crack growth involves failure of these fibersin sequence
from the center of the crack outwards. For one of these fibers the deformation of the fiber in
length, d, is given by the bulk sample strain, €,

d=e =2re
Failure of the materia occurs at e, where the fiber displacement reaches a critical value,
d. =2re,

The crack opening displacement model leads to a relationship between the fiber displacement
and the strain-energy release rate, G,

G=sgd
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where| ison the order of 1 and depends on the extent of the plastic zone.



J-Integral Method:
The strain-energy release rate for a crack regardless of its degree of plasticity can be determined

by considering alineintegral of the strain energy per unit volume summed with the integral of
the normal stress acting on the contour of the line integral, see figure below from Dieter.
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Figure 11-13 Sketch of T’ contour drawn around a crack tip 1o

T define the J integral.
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W = C‘)sijdqj strain energy per unit volume
Gistheintegral path around the crack

T isthenormal stresson theintegral path
u isthe bulk sample displacement
dsisapart of the path

T:F—; dsistherate of work in the area enclosed by G

If the Jintegral reaches a critical value failure occurs. For example values of J,, are commonly
tabulated for materials. The Jintegral is path independent so a path along the sample boundary
can be used making analytic measurement of the Jintegral acommon method in failure analysis.
Dieter gives detailed descriptions of ASTM methods for determination of the Jintegral.

Consider two samplesthat are strained to slightly different extents with slightly different crack

lengths, a The Jintegral for this material isequal to the potentia energy difference between the
two specimens divided by the difference in crack length,
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where E' is defined depending on the sample geometry,
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E'=E for plane stress (thick tensile sample)
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The figure below illustrates this view of the Jintegral in aload displacement curve from Dieter,

E'= for plane strain (thin tensile sample)
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Figure 11-14 Physical interpretation of the J integral.
Displacement & Note that B is specimen thickness

Dynamics of Failurein Viscoelastic M aterials:

Failure is by nature adynamic process. That is, failure occurs while a sampleis being loaded at
somerate. The considerations given above assume that the rate of deformation have little to do
with failure since the time constant associated with failure is assumed to be much smaller than
theinverse of the strain rate. Thisistrue of many materials. It isnot true of most viscoelastic
materials that display relaxation times on the order of or larger than the inverse of common strain
rates. The rate dependence, for aviscoelastic material following Arrhenius or WLF behavior,
trandates into a strong temperature dependence for the failure behavior of viscoelastic materials.
Details of this behavior will be discussed in the next section.
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