Continuum M echanics
Continuum M echanics and Constitutive Equations

Continuum mechanics pertains to the description of mechanical behavior of materials under the
assumption that the material isauniform continuum. Itisa"black box" approach with the goal
of predicting mechanical behavior in the absence of understanding for engineering and scientific
calculation. Thereisastrong parallel between the black box approach of continuum mechanics
and the description of athermodynamic system with which you may be familiar.

For Materials Scientists and Engineers, continuum mechanics provides alanguage and a
framework for understanding the physical and morphological basis for mechanical behavior. For
example, by using the tensoral nature of modulus a materials engineer can describe and
understand the modulus and fracture strength of a single crystal silicon wafer with reference to
the crystallographic orientation of the material. A materials engineer uses the terminology of
continuum mechanics to describe die swell in extrusion of a polymer filament. Similarly, the
piezoelectric behavior of ceramic crystalsis described using tensoral continuum mechanical
descriptions.

The tensoral description of stress, strain and rate of strain in continuum mechanics leads to the
basic definition of tensoral moduli, compliances and viscosities. These parameters are examples
of constitutive parameters, that is constants that describe the constitution of the "black box".
There are an unlimited number of constitutive constants each related to a particular response to
aparticular perturbation of a continuum system and it is important to understand what a
constitutive constant can and can not do. First, in and of itself a constitutive constant, such as the
thermal expansion coefficient, the modulus, conductivity, does not lead to any type of
understanding of amaterial. A constitutive parameter and constitutive equation predicts a
response usually under a set of strict limits. Knowing the tensile modulus will not in and of itself
enable an understanding of the shear compliance or the bulk modulus. In order to draw broader
consequences from a given constitutive parameter amodel for the mechanical behavior must be
considered based on our understanding of structure and morphology for a given material.

The combination of morphology and continuum mechanics has proven to be a powerful tool in
understanding the mechanical behavior of materials. For example, the lamellar crystallitesin a
polyethylene blown film are known to orient in the film plane for low density polyethylene and
normal to the machine direction for high density polyethylene from small-angle x-ray scattering
measurements. The tensile modulus for low-density polyethylene has roughly the same valuein
the machine and transverse directions for this reason making the material useful for packaging
applications. Additionally, this same continuum/morphological model for the microstructure
predicts low water vapor transmission for low density polyethylene filmswhich is also
advantageous in packaging applications. High density films display low moduli in the machine
direction and higher transverse moduli with high moisture transmission rates.



Stress

We will consider systems where the principle stresses are applied in one of the three Cartesian
directions. You have learned in your introductory mechanics class that the coordinate system for
any system can be rotated to this condition using devices such as Mohr's circle and associated
mathematical expressions. A review of such coordinate system rotationsis given in Mechanical
Metallurgy by Dieter in Chapter 2. We will also only consider surface forces, that is aforce that
actson asurface. Then, we do not consider body forces such as the force due to gravity,
centrifugal force, thermal expansion, or magnetic forces.

Under these conditions aforce is described by a magnitude, in Newtons, and a direction along
one of the three principle axes. A parameter described by a direction and a magnitude iscalled a
vector. Consider a surface force in the z-direction acting on a cubic element of material. The
surface on which the force acts can be one of the three types of surfaces available on the cubic
element. A surfaceisdescribed by the normal direction in the most compact form. That isthe
plane formed by the x-y axesis called the z-surface because the normal to this plane pointsin the
z-direction. Then, a z-surface force acting on the z-surface results in atensile stress on the cubic
volume element,

S, =FJA, )

The z-force can act on two other surfaces, x and y, x being the y-z plane and y being the x-z
plane. The corresponding stresses, s, and s, are best considered with regard to a deck of cards.
Consider adeck of cards where the friction between each pair of cardsis constant and where the
bottom card is fixed while the force F, is applied in the plane of the top card, in the z-direction of
they-z plane. Thetop card will move causing a deformation of the stack as shown in Figure 1.
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For the z-force there are two types of shear stresses that can be applied to a cubical volume
element,

s, = F,J/A, and s, =FJ/A, 2

For each of the three surface force vectors there are three types of surfaces on which they can
act. Then surface stressis a9 component second order tensor. A second order tensor isa



collection of values that have a magnitude and two directions. In Cartesian coordinates we can

write the stress tensor, s, as,
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There are many different nomenclatures used in the literature even where Cartesian coordinates
are used. For instance, the normal stresses, s,,, S,,, S, are sometimes written, s, s,, s,. The
shear stresses, s, and the like, are sometimes written, t,,. Theindicies are often written 1, 2, 3
rather than x, y, z. Moreover, a nine-component stress tensor can be equally defined in
cylindrical coordinates, for uniaxia tension or pipe flow, or in cylindrical coordinates through
simple coordinate transformations that you are familiar with from Calculus classes.

Although 9 components are needed to describe an arbitrary state of stress, generally we can
assume that there are no rotational forces acting on the cubical element for purposes of a
continuum analysis. This assumption leads to the ssmplification that the stress matrix of
equation (3) isasymmetric matrix, that iss; = s;. This can be demonstrated for one pair of
symmetric shear stresses, for instance s,, and s, Figure 2. The dashed lineinfigure 2isa
torsional bar which must have not rotational torque is the system is not subjected to rotational
motion. Two stresses, s,, and s, are applied to the system. Thetorsional element is subjected
to two rotational forces shown. These two forces must balance under these conditions leaving F,
=F.ands,, =s,,. (For each off diagonal torsional element the solid body has two symmetric
torsiona elements which when summed lead to the same resuilt.)
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Then, for systems not subject to rotation we can rewrite the stress matrix as a 6 component
matrix,
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Usually, we are not interested in the hydrostatic component to stress since this can only lead to
volumetric expansion or contraction. For amaterial in the atmosphere the hydrostatic
component of stress is a tensile stress whose magnitude is the atmospheric pressure, P and which
is applied equally to the faces of the Cartesian system. The hydrostatic pressure is the first of
three scalar invariants for the stresstensor. Aninvariant is ascalar value derived from atensor
that does not change with rotation or conversion of the coordinate system. The hydrostatic
pressure, P, can be obtained from the stress tensor by summation of the tensile or normal stress
components,
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Where "I, ;" isthefirst invariant of the stresstensor. The latter expression is an example of the
use of " Einstein” tensor notation where repeated indices indicate summation over that index.

Usudly it is desirable to remove hydrostatic pressure from consideration of the stress. The stress
tensor described above is, in this context, called the total stresstensor and is sometimes
denoted P, while the deviatory or extra stress tensor excluding hydrostatic stressis denoted, t,

®,-P s, s, G
t=0- szg-Pg:g Sy Sy P s, (6)
e S, S, S, Pe

where d is the identity tensor with unit values on the diagonal components and zeros el sewhere.

The other two invariants for the stress tensor are given by,
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where Einstein notation has been used in the first expressions.

Rotation of coordinate system can be achieved using matrix math. Thiswill be considered only
whereit is necessary later in the course.

It is often useful to consider deviatory normal stresses, t,;, t,,, t 4, interms of the first and
second normal stress differences,

y1=t11't22 =S;-Sy» (9)



Yo=ty- 135S - Sy (10)

since it is not possible to independently measure the normal stress components of the deviatory
stress tensor.

Strain:

Figure 1 defines a shear component of the strain in terms of the derivative of the z and x
dimensions of a cubic material element,

e, = dz/dx = g;; = dx,/dx,

Strain (e is sometimes called the displacement tensor) is a second order tensor with nine
components defined by tensile, g;, and shear, g;, components,
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With the stress tensor we removed the hydrostatic pressure since it did not give rise to some
types of mechanical deformation, for example flow of anincompressible fluid. Similarly the
total strain tensor is usualy decomposed into two tensors, the strain tensor, g;, and the vorticity

or rotation tensor, w;,

6 *ey
g = . > J (12
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The strain tensor is a symmetric 6 component tensor while the vorticity tensor is an
antisymmetric 3 component tensor. The vorticity tensor reflects the extent of rotational motion
which has occurred on application of stress.

The dilatometric (volume) strain is approximated by D = e; (using Einstein notation). This can
be removed from the strain to describe the deviatory strain tensor, €,

g€=e-

D
3 d (14)



Rate of Strain:
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Figure 3 shows the behavior in time of three samples displaying the three major categories of
mechanical response in materials. At acertain time afixed shear stressis applied to the sample
and the deformation, x, of the sample as afunction of timeis observed. For a Hookean solid the
response in terms of deformation isinstantaneous. When the stress is removed the material
completely recoversto theinitial length, x. For a Newtonian fluid the rate of change of length,
strain rate, is constant. The sample deforms at a constant rate until the stressis removed at
which time the extent of deformation remains constant, dashed line in lower plot. A viscoelastic
displays a combination of these two behaviors, thereis an initial and immediate deformation
reminiscent of Hookean behavior, followed by aregion of flow, dotted curve in lower graph.
Following removal of the stress there is some immediate recovery of the deformation similar to
Hookean behavior as well as some permanent set to the material indicated by the failure of the
material to return to the horizontal axis. For viscoelastic and viscous materials the rate of strain
is the dominant response to an applied stress.

Therate of strain tensor, g, isthe derivative of the strain tensor with respect to time,
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Congtitutive Equations:

As mentioned above a constitutive equation relates a response to the perturbation associated with
the response. For mechanical properties the response can be considered the strain or rate of
strain and we define the compliance, J, (sign conventions may vary)

J=— (17)

where the subscript "0" indicates that the stress is constant therefore defining a creep
measurement such as shown in figure 3.

The modulus, E, is defined in the context of a stress relaxation experiment (constant strain),

E=> (18)
%

For a Hookean elastic the modulus and compliance are inverse parameters. For time dependent
response such as in viscoel astic materials there are complex rel ationships between the time
dependent modulus and time dependent compliance.

The viscosity, h, isdefined in parallel to the modulus, (Sign conventions may vary)
h=— (19)
Equations 17, 18 and 19 define the ideal behavior expected for a Hookean elastic (17 and 18) and

for aNewtonian fluid (19).

Since the stress, strain and strain rate are tensoral quantities, equations 17 to 19 must correctly be
written in tensor form, thiswill be discussed below.

Normal stresses which develop in polymer flow and lead to die swell and related phenomena are
described by low strain rate idealized constitutive equations,
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Elastic Constants (Tensoral Analysis):
In the most generic sense we can consider each component of the total stress tensor as having a
relationship with each component of the total strain tensor. The elastic constant (modulus)

tensor would then have 9 x 9 = 81 possible components. For t;; and g, we would have,

t; =C,& whereC, has 81 componen (21)



Since both t;; and g, are symmetric tensors, that ist;; =t
independent components,

the modulus tensor displays 36
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If the elastic constant matrix isindependent of orientation of the material, the material is called
mechanically isotr opic (meaning same form). Materials such as amultigrain metal or an
amorphous polymer are usually isotropic. If the elastic constants matrix changes with the
material orientation the material is called mechanically anisotropic. Materials such asasilicon
wafer, an aluminum pop can or afiber are highly anisotropic in mechanical response.

Generaly the elastic constant matrix is symmetric based on a generalized association between
strain an energy in mechanical deformation (see Malvern, "Introduction to the Mechanics of a
Continuous Media p. 285 for instance). Then the 36 term elastic tensor reduces to 21
independent parameters.

Generallyl, materials display some degree of mechanical symmetry. For aplane of symmetry in
the 12 plane (3 normal), the elastic constant matrix can be shown to reduce to 13 independent
constants since many of the elastic constants can be shown to be 0,
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If 3 otrhogonal planes of symmetry exist, such asin abiaxially oriented sheet, the elastic
constant matrix reduces to 9 independent parameters,
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For an isotropic material the elastic constants are independent of the orientation of the coordinate
axes and the elastic constant matrix can be reduced to 2 independent moduli.
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Then atensile stress strain measurement and a shear measurement will fully characterize the
mechanical response of an isotropic material.

Generally, we consider much simpler scenarios of mechanical deformation and the traditional
nomenclature for tensile and shear tests should be compared with the matrix description given
above. Equation 18 can be written,

t,=Ee, andt, =Ce, (24)

where E isthe tensile modulus and G is the shear modulus. A tensile stressin the x-direction
produces contraction in the y and z directions described by the Poisson ratio, n,
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For an incompressible material such as arubber n = 0.50. For metals the value is generally 0.33.
For an isotropic material we know that there are only two independent moduli, equation 23, so E,
G and n can be related,

E

G= 2(1+n)

We can also consider a modulus associated with dilatometric deformation ( deformation that
resultsin avolume change). The bulk modulus, K, related hydrostatic pressure, P, to the
dilatation, D= e +e,,+e;,,

(26)

P 1
K=—== 27
i (27)

where b isthe compressibility. Again, the new modulus can be related to the two original
moduli,
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Lame's constant, | , is used to describe the effects of dilatation on tensile stress,

_ nE
= (1+n)(1- 2n) 9

We have,
Su =20, + ID (30)
This should be compared with the matrix elements of equation 23.

For an isotropic material with all components of stress subject to small strain we consider that a
tensile stress, s ,;, leads only to tensile strains, e, e,=-ne;;, €, =-ne;;. Then,

€ = é (S i ~ n(s i +Skk)) (31)

Shear stress produces only one shear strain,

s; =Ge; (32)
where G is the shear modulus.
Elastic Strain Energy:

The area under a stress-strain curve is equal to the energy expended in deformation, Figure 4.
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The relationship between strain energy and stress and strain can be obtained by considering that
energy is equal to the applied force, F, times the change in distance over which the force acts,

10



dU = F(x)dx = xF (¢)de (33)
where x isaunit length. The forcein the first graph of Figure 4 follows the function,

F(e) = AEe= x’Ee (34)
where A isthe unit area associated with stress. Then we have,

dU = F(x)dx =V, Eede (35)

unit
where V isaunit volume. Dividing the energy by the unit volume provides the strain energy
density, U,. Integration of equation (35) yields,
e‘ 1 2 1
U,= OEede==Ee" ==se (36)
e=0 2 2
Thisexpression isvalid for tensile stress and shear stress. For ageneral 3-d stress tensor we can

obtain using similar logic,

1
U, ZESiij (37)

using Einstein notation. Using equations (31) and (32),
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using Einstein notation. Using equation (30),
U —1|Dz+c;e2+1c;( ) (39)
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From equation (39), the derivative of the strain energy density with respect to any strain
component yields the corresponding stress component and similarly, from equation (38) the
derivative with respect to any stress component yields the corresponding strain component,

I, =s, and 1Y, =e, (40).

Extension of Continuum Conceptsto Materials Science:

As was mentioned above, continuum mechanics considers a material to be composed of a
continuum with no structural features. In thisway engineering properties can be predicted and
used in design. Asamaterials scientist we know some of the details of various engineering
materials and the basic assumption of continuum mechanicsis clearly incorrect. However, we
can use the continuum framework to develop more complicated descriptions of materials.
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We can first consider the most rudimentary details of materials. All materials are composed of
atoms that may be bonded together with covalent or ionic bonds. Deformation of a material can
lead to slight deformation of these bonds and to some extent thisis the simplest view of a
Young's modulus. Consider the atom, A, in figure 5, subject to a displacement, u. Displacement
from the equilibrium position in a crystal, for instance, is usually considered in terms of the
atomic potential energy diagram, f (u).
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The potential energy, f (u), can be acomplex function but any normal function can be described
interms of a Taylor series expansion about a known point such as the equilibrium point, u =0,

f(u) =f,+ 800, ABTO o (41)
€dud, 2edu’g

Theforce, F=df /du, is0 at u= 0 so thefirst derivative is zero. (Additionally, the potentia is
symmetric so that all odd power derivatives must be equal to 0.) Then we can write the force, F,
in terms of the remaining derivatives ignoring higher order terms, u’, u®, for small displacements,
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This equation is of the form of Hook's Law, F = kg, u where k, isthe spring constant, related to
the Young's Modulus. Then the Young's Modulus, E, is proportional to the second derivative of
the potential energy for atomic displacement at the equilibrium atomic position. Thisisour first
consideration of the relationship between structure and mechanical properties.
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