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Continuum Mechanics

Continuum Mechanics and Constitutive Equations

Continuum mechanics pertains to the description of mechanical behavior of materials under the
assumption that the material is a uniform continuum.  It is a "black box" approach with the goal
of predicting  mechanical behavior in the absence of understanding for engineering and scientific
calculation.  There is a strong parallel between the black box approach of continuum mechanics
and the description of a thermodynamic system with which you may be familiar.

For Materials Scientists and Engineers, continuum mechanics provides a language and a
framework for understanding the physical and morphological basis for mechanical behavior.  For
example, by using the tensoral nature of modulus a materials engineer can describe and
understand the modulus and fracture strength of a single crystal silicon wafer with reference to
the crystallographic orientation of the material.  A materials engineer uses the terminology of
continuum mechanics to describe die swell in extrusion of a polymer filament.  Similarly, the
piezoelectric behavior of ceramic crystals is described using tensoral continuum mechanical
descriptions.

The tensoral description of stress, strain and rate of strain in continuum mechanics leads to the
basic definition of tensoral moduli, compliances and viscosities.  These parameters are examples
of constitutive parameters, that is constants that describe the constitution of the "black box".
There are an unlimited number of constitutive constants each related to a particular response to
a particular perturbation of a continuum system and it is important to understand what a
constitutive constant can and can not do.  First, in and of itself a constitutive constant, such as the
thermal expansion coefficient, the modulus, conductivity, does not lead to any type of
understanding of a material.  A constitutive parameter and constitutive equation predicts a
response usually under a set of strict limits.  Knowing the tensile modulus will not in and of itself
enable an understanding of the shear compliance or the bulk modulus.  In order to draw broader
consequences from a given constitutive parameter a model for the mechanical behavior must be
considered based on our understanding of structure and morphology for a given material.

The combination of morphology and continuum mechanics has proven to be a powerful tool in
understanding the mechanical behavior of materials.  For example, the lamellar crystallites in a
polyethylene blown film are known to orient in the film plane for low density polyethylene and
normal to the machine direction for high density polyethylene from small-angle x-ray scattering
measurements.  The tensile modulus for low-density polyethylene has roughly the same value in
the machine and transverse directions for this reason making the material useful for packaging
applications.  Additionally, this same continuum/morphological model for the microstructure
predicts low water vapor transmission for low density polyethylene films which is also
advantageous in packaging applications.  High density films display low moduli in the machine
direction and higher transverse moduli with high moisture transmission rates.
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Stress

We will consider systems where the principle stresses are applied in one of the three Cartesian
directions.  You have learned in your introductory mechanics class that the coordinate system for
any system can be rotated to this condition using devices such as Mohr's circle and associated
mathematical expressions.  A review of such coordinate system rotations is given in Mechanical
Metallurgy by Dieter in Chapter 2.  We will also only consider surface forces, that is a force that
acts on a surface.  Then, we do not consider body forces such as the force due to gravity,
centrifugal force, thermal expansion, or magnetic forces.

Under these conditions a force is described by a magnitude, in Newtons, and a direction along
one of the three principle axes.  A parameter described by a direction and a magnitude is called a
vector.  Consider a surface force in the z-direction acting on a cubic element of material.  The
surface on which the force acts can be one of the three types of surfaces available on the cubic
element.  A surface is described by the normal direction in the most compact form.  That is the
plane formed by the x-y axes is called the z-surface because the normal to this plane points in the
z-direction.  Then, a z-surface force acting on the z-surface results in a tensile stress on the cubic
volume element,

σzz = Fz/Az (1)

The z-force can act on two other surfaces, x and y, x being the y-z plane and y being the x-z
plane.  The corresponding stresses, σzx and σzy are best considered with regard to a deck of cards.
Consider a deck of cards where the friction between each pair of cards is constant and where the
bottom card is fixed while the force Fz is applied in the plane of the top card, in the z-direction of
the y-z plane.  The top card will move causing a deformation of the stack as shown in Figure 1.

For the z-force there are two types of shear stresses that can be applied to a cubical volume
element,

σzx = Fz/Ax and σzy = Fz/Ay (2)

For each of the three surface force vectors there are three types of surfaces on which they can
act.  Then surface stress is a 9 component second order tensor.  A second order tensor is a



3

collection of values that have a magnitude and two directions.  In Cartesian coordinates we can
write the stress tensor, σij, as,

σ ij =
σxx σ xy σ xz

σyx σ yy σ yz

σ zx σzy σ zz

 

 

 
 

 

 

 
 

(3)

There are many different nomenclatures used in the literature even where Cartesian coordinates
are used.  For instance, the normal stresses, σxx, σyy, σzz, are sometimes written, σx, σy, σz.  The
shear stresses, σzx and the like, are sometimes written, τzx.  The indicies are often written 1, 2, 3
rather than x, y, z.  Moreover, a nine-component  stress tensor can be equally defined in
cylindrical coordinates, for uniaxial tension or pipe flow, or in cylindrical coordinates through
simple coordinate transformations that you are familiar with from Calculus classes.

Although 9 components are needed to describe an arbitrary state of stress, generally we can
assume that there are no rotational forces acting on the cubical element for purposes of a
continuum analysis.  This assumption leads to the simplification  that the stress matrix of
equation (3) is a symmetric matrix, that is σij = σji.  This can be demonstrated for one pair of
symmetric shear stresses, for instance σxy and σyx, Figure 2.  The dashed line in figure 2 is a
torsional bar which must have not rotational torque is the system is not subjected to rotational
motion.  Two stresses, σxy and σyx, are applied to the system.  The torsional element is subjected
to two rotational forces shown.  These two forces must balance under these conditions leaving Fy

= Fx and σxy = σyx.  (For each off diagonal torsional element the solid body has two symmetric
torsional elements which when summed lead to the same result.)

Then, for systems not subject to rotation we can rewrite the stress matrix as a 6 component
matrix,

σ ij =
σxx σ xy σ xz

σxy σ yy σ yz

σ xz σyz σ zz

 

 

 
 

 

 

 
 

(4)
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Usually, we are not interested in the hydrostatic component to stress since this can only lead to
volumetric expansion or contraction.  For a material in the atmosphere the hydrostatic
component of stress is a tensile stress whose magnitude is the atmospheric pressure, P and which
is applied equally to the faces of the Cartesian system.  The hydrostatic pressure is the first of
three scalar invariants for the stress tensor.  An invariant is a scalar value derived from a tensor
that does not change with rotation or conversion of the coordinate system.  The hydrostatic
pressure, P, can be obtained from the stress tensor by summation of the tensile or normal stress
components,

P =
σxx +σ yy + σzz

3
=

I1,σ

3
=

σ ii

3
(5)

Where "I1, σ" is the first invariant of the stress tensor.  The latter expression is an example of the
use of "Einstein" tensor notation where repeated indices indicate summation over that index.

Usually it is desirable to remove hydrostatic pressure from consideration of the stress.  The stress
tensor described above is, in this context, called the total stress tensor and is sometimes
denoted Π, while the deviatory or extra stress tensor excluding hydrostatic stress is denoted, τ,

τ = ∏− Pδ = σ − Pδ =
σxx − P σxy σ xz

σ xy σ yy − P σ yz

σxz σ yz σ zz − P

 

 

 
 

 

 

 
 

(6)

where δ is the identity tensor with unit values on the diagonal components and zeros elsewhere.

The other two invariants for the stress tensor are given by,

I2,σ =
1

2
σ ikσki −σ iiσ kk( ) =

σ22 σ23

σ23 σ33

+
σ11 σ13

σ13 σ33

+
σ11 σ12

σ12 σ22

(7)

I3,σ =
1

6
2σ ijσ jkσki − 3σ ijσ jiσ kk + σ iiσ jjσkk( ) =

σ xx σxy σ xz

σ xy σyy σ yz

σ xz σyz σ zz

(8)

where Einstein notation has been used in the first expressions.

Rotation of coordinate system can be achieved using matrix math.  This will be considered only
where it is necessary later in the course.

It is often useful to consider deviatory normal stresses, τ11, τ22, τ33, in terms of the first and
second normal stress differences,

ψ1 = τ11 − τ22 =σ11 −σ 22 (9)
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ψ2 = τ22 − τ33 =σ 22 −σ33 (10)

since it is not possible to independently measure the normal stress components of the deviatory
stress tensor.

Strain:

Figure 1 defines a shear component of the strain in terms of the derivative of the z and x
dimensions of a cubic material element,

ezx = dz/dx = e31 = dx3/dx1

Strain (e is sometimes called the displacement tensor) is a second order tensor with nine
components defined by tensile, eii, and shear, eij, components,

eij =
exx exy exz

exy eyy eyz

exz eyz ezz

 

 

 
 

 

 

 
 

(11)

With the stress tensor we removed the hydrostatic pressure since it did not give rise to some
types of mechanical deformation, for example flow of an incompressible fluid.  Similarly the
total strain tensor is usually decomposed into two tensors, the strain tensor, εij, and the vorticity
or rotation tensor, ωij,

εij =
eij + e ji( )

2
(12)

ω ij =
e ij − e ji( )

2
(13)

The strain tensor is a symmetric 6 component tensor while the vorticity tensor is an
antisymmetric 3 component tensor.  The vorticity tensor reflects the extent of rotational motion
which has occurred on application of stress.

The dilatometric (volume) strain is approximated by ∆ = εii (using Einstein notation).  This can
be removed from the strain to describe the deviatory strain tensor, ε',

ε' = ε −
∆
3

δ (14)
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Rate of Strain:

Figure 3 shows the behavior in time of three samples displaying the three major categories of
mechanical response in materials.  At a certain time a fixed shear stress is applied to the sample
and the deformation, x,  of the sample as a function of time is observed.  For a Hookean solid the
response in terms of deformation is instantaneous.  When the stress is removed the material
completely recovers to the initial length, x.  For a Newtonian fluid the rate of change of length,
strain rate, is constant.  The sample deforms at a constant rate until the stress is removed  at
which time the extent of deformation remains constant, dashed line in lower plot.  A viscoelastic
displays a combination of these two behaviors, there is an initial and immediate deformation
reminiscent of Hookean behavior, followed by a region of flow, dotted curve in lower graph.
Following removal of the stress there is some immediate recovery of the deformation similar to
Hookean behavior as well as some permanent set to the material indicated by the failure of the
material to return to the horizontal axis.  For viscoelastic and viscous materials the rate of strain
is the dominant response to an applied stress.

The rate of strain tensor, ˙ γ , is the derivative of the strain tensor with respect to time,

˙ γ =
dε
dt

=
dv

d x
(15)

or equivalently the velocity gradient tensor.  Consider ε12,

ε12 =
dx1

dx2

,  ˙ γ 12 =
dε12

dt
=

d
dx1

dx2

 
 
  

 
 

dt
=

d
dx1

dt

 
 

 
 

dx2

=
dv1

dx2

(16)
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Constitutive Equations:

As mentioned above a constitutive equation relates a response to the perturbation associated with
the response.  For mechanical properties the response can be considered the strain or rate of
strain and we define the compliance, J, (sign conventions may vary)

J =
ε

σ 0

(17)

where the subscript "0" indicates that the stress is constant therefore defining a creep
measurement such as shown in figure 3.

The modulus, E, is defined in the context of a stress relaxation experiment (constant strain),

E =
σ
γ 0

(18)

For a Hookean elastic the modulus and compliance are inverse parameters.  For time dependent
response such as in viscoelastic materials there are complex relationships between the time
dependent modulus and time dependent compliance.

The viscosity, η, is defined in parallel to the modulus, (sign conventions may vary)

η =
τ
˙ γ 0

(19)

Equations 17, 18 and 19 define the ideal behavior expected for a Hookean elastic (17 and 18) and
for a Newtonian fluid (19).

Since the stress, strain and strain rate are tensoral quantities, equations 17 to 19 must correctly be
written in tensor form, this will be discussed below.

Normal stresses which develop in polymer flow and lead to die swell and related phenomena are
described by low strain rate idealized constitutive equations,

Ψ1 =
ψ1

˙ γ 0
2  and Ψ2 =

ψ2

˙ γ 0
2 (20)

Elastic Constants (Tensoral Analysis):

In the most generic sense we can consider each component of the total stress tensor as having a
relationship with each component of the total strain tensor.  The elastic constant (modulus)
tensor would then have 9 x 9 = 81 possible components.  For τij and εkl we would have,

τ ij = Cijklεkl  where Cijkl  has 81 components (21)
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Since both τij and εkl are symmetric tensors, that is τij = τji, the modulus tensor displays 36
independent components,

τ11

τ22

τ33

τ23

τ 31

τ12

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

ε11

ε22

ε33

2ε23

2ε31

2ε12

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(22)

If the elastic constant matrix is independent of orientation of the material, the material is called
mechanically isotropic (meaning same form).  Materials such as a multigrain metal or an
amorphous polymer are usually isotropic.  If the elastic constants matrix changes with the
material orientation  the material is called mechanically anisotropic.  Materials such as a silicon
wafer, an aluminum pop can or a fiber are highly anisotropic in mechanical response.

Generally the elastic constant matrix is symmetric based on a generalized association between
strain an energy in mechanical deformation (see Malvern, "Introduction to the Mechanics of a
Continuous Media p. 285 for instance).  Then the 36 term elastic tensor reduces to 21
independent parameters.

Generallyl, materials display some degree of mechanical symmetry.  For a plane of symmetry in
the 12 plane (3 normal), the elastic constant matrix can be shown to reduce to 13 independent
constants since many of the elastic constants can be shown to be 0,

c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 c46

0 0 0 c45 c55 c56

c16 c26 c36 c46 c56 c66

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Plane of Symmetry (23)

If 3 otrhogonal planes of symmetry exist, such as in a biaxially oriented sheet, the elastic
constant matrix reduces to 9 independent parameters,

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

 

 

 
 
 
 
 

 

 

 
 
 
 
 

3 Orthogonal Symmetry Planes (23)
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For an isotropic material the elastic constants are independent of the orientation of the coordinate
axes and the elastic constant matrix can be reduced to 2 independent moduli.

λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Isotropic Material (23)

Then a tensile stress strain measurement and a shear measurement will fully characterize the
mechanical response of an isotropic material.

Generally, we consider much simpler scenarios of mechanical deformation and the traditional
nomenclature for tensile and shear tests should be compared with the matrix description given
above.  Equation 18 can be written,

τ11 = Eε11  and τ12 = Gε12 (24)

where E is the tensile modulus and G is the shear modulus.  A tensile stress in the x-direction
produces contraction in the y and z directions described by the Poisson ratio, ν,

ε22 =ε33 = −νε11 = -
νσ11

E
  Isotropic Material (25)

For an incompressible material such as a rubber ν = 0.50.  For metals the value is generally 0.33.
For an isotropic material we know that there are only two independent moduli, equation 23, so E,
G and ν can be related,

G =
E

2 1+ ν( )
(26)

We can also consider a modulus associated with dilatometric deformation ( deformation that
results in a volume change).  The bulk modulus, K, related hydrostatic pressure, P, to the
dilatation, ∆ = ε11+ε22+ε33,

K =
P

∆
=

1

β
(27)

where β is the compressibility.  Again, the new modulus can be related to the two original
moduli,
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K =
E

3 1− 2ν( )
=

EG

9G − 3E( )
(28)

Lame's constant, λ, is used to describe the effects of dilatation on tensile stress,

λ =
νE

1+ν( ) 1−2ν( )
(29)

We have,

σ11 = 2Gε11 + λ∆ (30)

This should be compared with the matrix elements of equation 23.

For an isotropic material with all components of stress subject to small strain we consider that a
tensile stress, σ11, leads only to tensile strains, ε11, ε22=-νε11, ε33 = -νε11.  Then,

εii =
1

E
σ ii −ν σ jj + σkk( )( ) (31)

Shear stress produces only one shear strain,

σ ij = Gεij (32)

where G is the shear modulus.

Elastic Strain Energy:

The area under a stress-strain curve is equal to the energy expended in deformation, Figure 4.

The relationship between strain energy and stress and strain can be obtained by considering that
energy is equal to the applied force, F, times the change in distance over which the force acts,
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dU = F x( )dx = xF ε( )dε (33)
where x is a unit length.  The force in the first graph of Figure 4 follows the function,

F ε( ) = AEε = x2 Eε (34)

where A is the unit area associated with stress.  Then we have,

dU = F x( )dx =Vunit Eεdε (35)

where V is a unit volume.  Dividing the energy by the unit volume provides the strain energy
density, U0.  Integration of equation (35) yields,

U0 = Eεdε
ε = 0

ε

∫ =
1

2
Eε2 =

1

2
σε (36)

This expression is valid for tensile stress and shear stress.  For a general 3-d stress tensor we can
obtain using similar logic,

U0 =
1

2
σ ijεij (37)

using Einstein notation.  Using equations (31) and (32),

U0 =
1

2E
σ ii

2 −
ν

2E
σ iiσ jj −σ ii

2( ) +
1

4G
σ ijσ ij −σ iiσ jj( ) (38)

using Einstein notation.  Using equation (30),

U0 =
1

2
λ∆2 + Gε ii

2 +
1

4
G ε iiε jj −ε ii

2( ) (39)

From equation (39), the derivative of the strain energy density with respect to any strain
component yields the corresponding stress component and similarly, from equation (38) the
derivative with respect to any stress component yields the corresponding strain component,

∂U 0

∂εij

=σ ij    and   
∂U 0

∂σ ij

=ε ij (40).

Extension of Continuum Concepts to Materials Science:

As was mentioned above, continuum mechanics considers a material to be composed of a
continuum with no structural features.  In this way engineering properties can be predicted and
used in design.  As a materials scientist we know some of the details of various engineering
materials and the basic assumption of continuum mechanics is clearly incorrect.  However, we
can use the continuum framework to develop more complicated descriptions of materials.
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We can first consider the most rudimentary details of materials.  All materials are composed of
atoms that may be bonded together with covalent or ionic bonds.  Deformation of a material can
lead to slight deformation of these bonds and to some extent this is the simplest view of a
Young's modulus.  Consider the atom, A, in figure 5, subject to a displacement, u.  Displacement
from the equilibrium position in a crystal, for instance, is usually considered in terms of the
atomic potential energy diagram, φ(u).

The potential energy, φ(u), can be a complex function but any normal function can be described
in terms of a Taylor series expansion about a known point such as the equilibrium point, u = 0,

φ u( ) = φ0 +
dφ
du

 
 

 
 

0

u +
1

2

d2φ
du2

 
 
  

 
 

0

u2 + ... (41)

The force, F = dφ/du, is 0 at u = 0 so the first derivative is zero.  (Additionally, the potential is
symmetric so that all odd power derivatives must be equal to 0.)  Then we can write the force, F,
in terms of the remaining derivatives ignoring higher order terms, u4, u6, for small displacements,

F =
dφ
du

=
d2φ
du2

 
 
  

 
 

0

u (42)

This equation is of the form of Hook's Law, F = kspr u where kspr is the spring constant, related to
the Young's Modulus.  Then the Young's Modulus, E, is proportional to the second derivative of
the potential energy for atomic displacement at the equilibrium atomic position.  This is our first
consideration of the relationship between structure and mechanical properties.


