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INTRODUCTION

A polymer is a high molecular weight material; polymerization is the series of reactions
leading to the formation of polymers from low molecular weight material (called mono-
mers). These can be broadly classified as step growth and chain growth polymerizations
[1, 2]. In the former, the growth of molecules occurs through the reaction of reactive
groups, e.g., —COOH, —NH,, —OH, located on the molecules. Polymer formation can
occur through this mechanism only when the starting monomer has at least two reactive
groups, when there are more than two of them in the monomer, the resultant polymer is
cither branched or crosslinked in structure. As opposed to this, linear polymers are formed
by the polymerization of bifunctional monomers. In chain growth polymerization there
are growth centers in the reaction mass, to which monomers add on successively until
either all monomers are consumed or some external agent terminates the polymerization.
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Depending on the nature of these growth centers, chain growth polymerization can be 3
further classified into radical, cationic, anionic, and stereoregular polymerizations [1-8]. -3
It has been found that different mechanisms of polymerization have different characteris- 3
tics. As an example, in step growth polymerization, the weight average molecular weight J
of polymer formed increases with the reaction time, whereas for chain growth polymeriza-

tion it reaches a cettain maximum valve only.

Like all other reactions in nature, polymerization is reversible. However, in almost all "
the studies, it is assumed to be irreversible in order to simplify the analysis. In reversible ]
polymerization, the overall conversion is limited by equilibrium; in practice, the reverse
step is suppressed by applying high vacuum and higher temperatures. Unlike reactions of 3§
low molecular weight compounds, in polymerization there is a formation of several 3

homologs which are chemically the same but differ in their molecular weights. The

reaction mass can thus be characterized by a molecular weight distribution (MWD). This 3

is nothing but a plot of the concentration of oligomer of chain length # (denoted by [P,])

versus 1. The different physical properties of the polyiners are to a large extent dependent f-;
upon MWD and a given MWD can be equivalently represented by its moments. For -

polymeric systems, only the first three moments can be experimentally measured [1, 3],

and they have been shown to characterize the MWD completely. The general definition of §

moments is given by ‘

Me = D nK[Pl,  K=0,12,... ' OF

n=1

where [P, ] is the concentration of P, species of chain length » in the reaction mass. The
number and the weight average chain lengths ., and ,, are the polydispersity index p of §

the polymer are defined in terms of these moments as

A, .E
=T 2
P = N (2a) ]

Az - '.

W Rl - . . ( ) .';
Py 3
=~ (2c) 4
P My 4

In Eq. 2¢, p measures the breadth of the MWD and is equal to 1 for monodisperse 3
material. On multiplying ., and ., with the molecular weight of the repeat uait, one 4
obtains the number average molecular weight M, and the weight average molecular j
weight M,,. These are known to determine the physical properties of the polymers. For §
example, the viscosity of molten polymers is proportional to the weight average molecular
weight and above a certain value of M., the viscosity usually varies [3] as M,, [3, 4]. This §
is important in estimating the power requirements for pumping the reaction mass, say, &
through a tubular reactor, a spinnerette to obtain fibers, or extruders and molds. Tn another §
example, the aliphatic polyester formed from w-hydroxydecanoic acid has little strength
or spinnability when v, is about 25 but it gives long, extremely weak fibers that can be }
cold-drawn when ., is about 55 [2]. However, for j,, above 100, it can be spun easily and
cold-drawn to strong fibers. In the following section we present the analysis of batch 3

reactors forming polymers through the reversiblé step growth and radical mechanisms.
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| Step growth polymerization occurs through reaction of two or more reactive groups. If the
p starting monomer is bifunctional, the resulting polymer is linear in structure; otherwise the
. polymer is branched. The following analysis of batch reactors is presented for both cases.

versible. However, in almost allif . Kinetic Model of Reversible Linear Step Growth Polymerization
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It is assumed that the starting monomer is an ARB type where A and B are the reacting
| functional groups. On polymerization, larger chains are formed but no matter what the
& chain length, it has one unreacted A and one unreacted B at its ends. The growth of the
 polymer can be schematically written as

P,,,+Pnk£,,,'+n+W, mnrn=172,,,. (3)
b

| where W is the condensation product and P,, is a polymer chain having m repeat units. It is
f observed that polymerization is represented by a set of infinite elementary reactions given
b in Eq. 3 and it is desired to model these kinetically to determine the MWD of the polymer
b a5 2 function of time. Based on the experiments of Bhide and Sudborough, Flory proposed
[ the equal reactivity hypothesis in which the reactivity of the reactive groups is indepen-
E dent of the chain length of the polymer. This serves as the most basic assumption in the
F modeling of step growth polymerization and is described below.

A chemical reaction can occur only when the reacting molecules collide. The rate of
F reaction, R, can thus be written in terms of the product of the collision frequency, w,, ,.,
f between P, and P, and the probability of their reaction, Z,, ,,. Therefore,

e,

gth n in the reaction mass. The 4
te the polydispersity index p of§

R= 00,y an,n (4)

-

| where o is a constant of proportionality. From the equal reactivity hypothesis [1], the
¢ probability of reaction, Z,.n» is independent of m and n. Thus, if Z is the probability of
b reaction between two reacting groups and P, and P, can react in s distinct ways, Z,, ,,
¢ would be equal to sZ. Additionally, the collision frequency w,, ,, between two dissimilar
. molecules is proportional to [P,,][P, ], whereas that between P, and P,, is proportional to
- [P,,]2/2. Consequently, if &, is the rate constant associated with the reaction of functional
 groups, the kinetic model under the equal reactivity hypothesis can be written as

(2b)
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k' For linear chains, the reacting functional groups are always located at the end of the chain.
® This means that in Eq. 5, s is always 2, as seen in Figure 1. Any polymer species P, (1 =
E 7) is formed in the forward step by reacting a P.(r <m, r=1,2...) witha P,—,. In the
E teverse reaction, it is formed by the attack of the condensation product, W, on the bonds
f of the polymer chain. W can react on any position of the chain but there are two locations
i on it which would give a small chain of the same length. For a linear polymer, P, the
. fotal number of bonds is (n — 1). Consequently, the mole balance relation for P,ina
| batch reactor is given by
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where k, and &, are the forward and the reverse reaction rate constants, respectively. The
relation for the kth moment can be derived by multiplying the preceding mole balance &
relations for P, by n¥ (k = 0,1,2) and summing the various terms appropriately. The 3
ultimate moment generation relates are given by [10]
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Correspondingly, its moments can be found and are assumed to be given by By using Eq. 11, the MWD .
‘_ M 3 Ie

)\k‘ = D APl =l k=012 ) i (Rt

=c ! 3 a ’ &,
Equation 7b is the easiest to integrate and it shows that the first moment A, is time -_ { 4fp,] = 2k [P\

invariant, equal to A}. It may be observed that the first moment is the same as the total § dt plEulho + &,

count of repeat units, which is time invariant during polymerization. Equatton 7¢ gives \, 7 1
but it involves A3 and can be integrated only when some information about it is known, 3 4 + 2K W] { N
However, if the moment generation relation for A is written, it is found that it involves A, 3 ' : 4 0

b and at/ = o,
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Figure 1 Schematic representation of reaction between linear chains. 3 [W] + X,




- and the moment generation relation for A, involves A5, and so on. This hierarchy of
E relation has been broken by using a suitable closure relation. This approximate closure
¢ relation for the bifunctional step growth polymerization was proposed in the literature by
assuming the MWD to be given by the Schulz—Zimm relation for which A, is related to
E A, A, and A, by the following relation [11, 12}:

o M@AA — AD

A
* Mo

n=2 1 (10)
In the literature, computations of moments have been made and results have been com-
E pared with those found from the exact MWD [11, 13—17]. The match between the two has
E becn good and the approximation given in Eq. 10 yields satisfactory results in the entire
range of computation. ‘

£ The major difficulty of computing the MWD of reversible ARB polymerization lies in
b the fact that the chain growth step consists of an infinite number of elementary reactions as
 written in Eq. 6. The various mole balance relations for species P; for any i in baich
F reactors are highly nonlinear and coupled differential equations. Computationally one
 solves an arbitrarily large number (say N) of these equations such that the concentration of
¢ Py is close to zero. However, some truncation error is introduced in the repeat count
f variable because higher chain length species are neglected. In actual practice, one would
F like to determine the first three moments of the distribution—Xg, A;, and A,—and the
b concentrations of the first few oligomers, which cannot be determined without solving the
E entire MWD. It is possible to decouple these equations using the following transformation
[18]:
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fand at ¢ = 0;

 Pl=[P)s n=123,... (12¢)

f Equations 12 are now in the decoupled form and the concentration of any species can be
. determined sequentially by first determining the zeroth moment of distribution, Ay, through
F I3q. 7a and the problem of truncation error is completely eliminated.

b To illustrate the method outlined above, formation of polyethylene terephthalate (PET)
- in batch reactors is analyzed with ethylene glycol (EG) evaporating [19-21]. If it is
. assumed that the polymer formed cannot be evaporated and the vapor—liquid equilibrium
E is governed by Raoult’s law, then

[W]

W] + X {42

pr = pXT)

chains,
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where p, and pXT) are the pressure applied on the reactor and the vapor pressure of the
condensation product and {W] is the concentration of the condensation product. Experi- 4

ments have shown that PET has an equilibrium constant K(= k,/k}} of 0.5, which is 281~ ¢=20
independent of temperature, and conversion of 99% is needed to obtain fiber-grade 3 T.Mn
polymer. In order to push the polymerization in the forward direction, high vacuum and 1 2.6~ R
temperature are applied. The effect of the polymerization pressure and the temperature §

can be evaluated through the use of Eqgs. 7, 12, and 13 as follows. To obtain the solution sal

of Egs. 12 and 13, they are written in the nondimensional form using the following 3
variables [18]: i

_[P,] 3
P, = 50 (142)
ko1 ;
_k_1 14b) §
B kK { )i
t = k,\0t (140);5
_ [W] 3
=5 (14d);
1 I

where
A = X a[P,lo (14¢)3
1 4 : 3

It is assumed that the feed to the batch reactor has its MWD given by Flory’s distribution}
with conversion p, of functicnal groups as 0.3; i.e.,atz = 0, 2

Pa = (1 — 0.3)0.3y
The moment equations can be derived; they are
dA
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N r i onomer de
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Do _iry B 15 d pecified wt
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These can be solved using the closure relation given in Eq. 10. Once the pressure and th
temperature are specified, Ag, A». P;, and P, can be found from Eqs. 15 and 16 using the]
Runge—Knutta numerical technique. The concentration of the condensation product W i
obtained from Eq. 13 assuming the escaping vapors and the liquid are in thermodynamij
equilibrium. i3
By using the computation method outlined here, it is possible to determine Ag, A,, P8
and P, as a function of the dimensionless reaction time and the w,, and p are computé_ feffect of higher temperature is si
using Eq. 2. At low pressures, a large amount of EG is evaporated and y,, and p increasg Eequilibrium is delayed © 18 810
continuously with time (as shown in Fig. 2). This implies that the polymers formed at loy y In the analysis presént dab
reaction pressures are highly polydispersed long-chain species. As opposed to this, at hig! oligomers have (he same re a .o.v‘l
pressures, the situation is found to be just the opposite. The dimensionless concentrationg Ethey are located on The Ceacnvlt_.
of the first two species P; and P, are presented in Figure 3 at different system pressures3 Ie-activity with expe;'imentafg;lzzr;
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e Figure 2 Number average chain length, W, and polydispersity index, p, versus time, for various
| values of reaction pressures (T = 500 K,p=2.0.

As the reaction proceeds the monomer, Py, converts into the higher oligomers. The
consumption of the monomer depends on the extent of the forward reaction. It is thus seen
that the reactor pressure affects the consumption of P, in the reaction mass. Similarly, the
concentration of the dimer, P,, increases with the residence time of the reactor, The
equilibrium point is specified when the concentration of any species does not change with
time. We thus see from Figure 3 that the equilibrium is delayed as the system’s pressure is
reduced.

When the temperature of the reactor is increased, the vapor pressure p* in Eq. 13 goes
up, thus reducing the reaction mass. This in turn reduces the effect of the reverse step in
step growth polymerization. In PET reactors, it is seen that the equilibrium constant, X, is
unaffected by the temperature. Figures 4 and 5 present data for Py, P,, p,, and p with the
reaction times for different temperatures. It is found that at high temperatures, higher
chain length species are formed and the polymer mass is also highly polydispersed. The
. effect of higher temperature is similar to that of the reduction of the total pressure and the
} equilibrium is delayed.

In the analysis presented above, it was assumed that the functional groups of various
oligomers have the same reactivity, independent of the chain length, 7, of the molecules
they are located on. The comparison of computed results with the assumption of equal
b reactivity with experimental data has sufficiently indicated that the overall polymerization

(15¢)

. Once the pressure and the ‘;
m Eqgs. 15 and 16 using the 3
condensation product W is 1
iquid are in thermodynamic 3

ble to determine Ao, Az, Py, 4
the ., and p are computed 3
rated and js,, and p increase §
the polymers formed at low §
. As opposed to this, at high
imensionless concentrations 4
. different system pressures. 3




05 s

P

0.4

03

Press.mm Hci|

0.2
~
/////::__ _______
o=
400
o1} )
100
I | 1 1 1 I L L I
00 0.2 04 06 o8 1-0 1.2 1.4 1-6 1.8

kphot

Figure 3 Effect of reactor pressure on concentrations of P, and P,. P, = 0.49, P, = 0.143,

Temp.’ K t50
P= 200mmHg N 4s
28 ac20 520
2.6 ——— };n 500 418
-11-7
2.4 480
1.
2_2_ /’—-" 550 6
c - —— 520
3 —
2.0 500 '®
8 s 480 ~1-&
450
1.5 e — e —————— 450 12
1 1 1 1 1 1 1 I ! M
Y02 04 06 08 10 12 14 16 18 20

kp?\t,ol'
Figure 4 Number average chain length, ,, and polydispersity index, p, versus time, t, for
various values of reaction temperatures (P = 200 mm Hg, B 2.0).

P=200mmHg
B:Z.O

P
——— P2

///
-
-
=TT ——
-
""""--..__‘__ —
~—
G

0 i 1 1
0 02 04 06

{ Figure 5 Effect of reactor temp

is far more complex and the as
[22). In addition, as the poly
increases several fold and the
used, becomes mass transfer ¢
In the reaction-controlled re
observed. This can arise when
polymerization of a diacid witt
have different reactivities. Th
bolically as the polymerization
C react with A with differen
anhydrides, generates two fun
cess and these two steps gene
resins can be represented by the

O
7N\
~ROH + CH,—CH—CH.
O

VRN
~ROCH,CH--CH, + HO)




1.8

. iy = 0.49, P, = 0.143.

/

550

520 "0

500 48
417

480

- 550 16

- 520 |

-s00 t°

180 -ha
—11.3

450

450 -2

S — Y

18 20

¢ index, p, versus time, #, for

Kinetic Modeling of Polymerization Reactions / 383

05—
P=200mmHy
N B=2.0
P1
04 ——— Py

0 I 1 | 1 I 1 1 L }
0- 02 04 06 08 10 12 14 .6 18

- Figure 5 Effect of reactor temperature on concentration of P, and P,.

is far more complex and the assumption of equal reactivity is a considerable simplification
[22]. In addition, as the polymerization progresses, the viscosity of the reaction mass
increases several fold and the overall reaction, at some stage depending on the reactor
used, becomes mass transfer controlled [13, 23-25].

In the reaction-controlled region, unequal reactivity of functional groups is commonly
observed. This can arise when the reacting groups are not kinetically equivalent, as in the
polymerization of a diacid with a glycol having primary and secondary OH groups which
have different reactivitics. These asymmetric monomers are usually represenied sym-
bolically as the polymerization of (AA + BC) monomers where functional groups B and
C react with A with different rate constants. The ring-opening reaction, as found in
anhydrides, generates two functional groups which particpate in the chain-building pro-
cess and these two steps generally have different reactivities. The formation of epoxy
resins can be represented by the following equations:

o 0
/N . /N
mROH + CH,—CH—CH,Cl — swR—O—CH,CH-—CH, (16a)
0 OH
/ N\ k |

~ROCH,CH—CH, + HORw — mROCH,—CH—CH,—OR~ (16b)
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where k; and %, are the different rate constant values. In urethane polymerization, the
unequal reactivity is explained by examining the effect of charge densities of the isocya-
nate groups on the phenyl diisocyanate monomer, OCN NCO. As one of the
isocyanate group reacts, the positive charge on the phenyl group reduces from its initial
value and the reactivity of the second —NCO group falls. This phenomenon is known as
induced asymmetry and can be modeled kinetically as

k:z
BB+ AA— A+ B (17a)
ks
B + AA S5 Am (17b)
. _
B 4 Ava =3 AmB A (17¢)

where AA represents the diisocyanate. Case analyzed various situations of asymmetry and
induced asymmetry and derived the molecular weight distribution in terms of the proba-
bilities of reaction of the various functional groups [26].

There is another class of unequal reactivity polymerization in which the rate constants
of the various oligomers are dependent on their chain lengths. This is chain length
dependent reactivity [16, 27-36], which is found, for example, in the polymerization of
sedium-p-fluorothiophenoxide [37]. In this, the reaction mass has more unreacted mono-
mer than that predicted by the equal reactivity hypothesis. This observation suggests that
the monomer has a lower reactivity. In the formation of polyamides, on the other hand,
polymer molecules are found to have lower reactivity [38].

Kinetic Model for Reversible Nonlinear Step Growth Polymerization

Nonlinear step growth polymerization takes place with monomers RY; having func-
tionality, f > 2. In this Y is the reactive group which on reaction gives rise to chemical
bonds. There are several industrially important nonlinear step growth polymerization
systems and some of these are polyesters from adipic acid or phthalic anhydride and
glycerol or pentacrythritol (alkyl resins), curing of epoxy propolymers with diamines,
curing of phenot formaldehyde polymers with hexamethylene tetramine, etc. In this class
of polymerization, branched molecules are formed at low conversions of reactive groups.
At a well-defined conversion {= 1/{f — 1)], some of these branched molecules are found

to combine into an infinite network structure of macroscopic dimensions, called a gel [1]. -

This phenomenon occurs long before the reactive groups are completely consumed, and
the point at which this occurs is referred to as the critical or gel point. Experimentally, the
gel point is recognized as the state when the viscosity of the reaction mass becomes
infinite and ‘‘gas bubbles’” fail to rise through the reaction mass,

The study of nonlinear step growth polymerization is more complex than that of the
linear case, and several approaches have been taken by different workers in this-area to
model the nonlinear. Flory [1, 39, 40] and Stockmayer [41-44] have approached this
problem by determining the probabilities of finding various branched molecular structures
in the reaction mass. Thereafter, they used these probability distributions to compute the
number and weight average molecular weights of the polymer before gelation. Their
approach, however, becomes exceedingly complex for systemns of industrial importance.
Other workers [45-47] have attempted to derive the average molecular weights directly,
without first obtaining the detailed distributions. However, the kinetic approach presented
in this section is more advantageous than the other approaches because it can be used
easily to predict the behavior of nonlinear polymerization in homogeneous continuous
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stirred tank reactors (HCSTRs). In addition, it can be more easily adapted to account for
intramolecular reactions.

The analysis using the kinetic approach of the self-polymerization of RY, monomers,
with Y functional group reacting with Y, is presented in this section. It is assumed that P,,
represents an n-mer in the reaction mass. If there are no intramolecular reactions, there are
nf — 2(n — 1) unreacted Y groups on P, since every bond in the molecule is formed by
reaction of two Y groups. Similar to the linear step growth polymetization, kinetic

. analysis has been made for the reversible nonlinear step growth polymerization with the

monocmer of functionality, f. In the forward reaction of step growth polymerization, two
functional groups of different molecules react to give higher molecular weight species.
When the reactive groups of the same molecule react, cyclic molecules are formed. The
modeling of the intramolecular reaction is extremely complex and is still an active area of
research [58—70]. Jacobson and Stockmayer [64] analyzed the formation of intramolecu-
lar bonds and observed that two reacting groups in a given chain must turn around and lie
within a small volume, V,, of each other. However, it has been shown that this represents
only a crude description of the cyclization process. Mutter, Sater, and Flory [71] used the
theory of chain statistics to describe this process. In this model they accounted for the
presence of bond.angle restrictions as well as steric hindrance. Tn addition, they included
the cyclization constraints that the bonds of reacting sides must approach each other so
that they are parallel to cach other. ,

The reverse step to this involves the reaction of the bonds of a macromolecule with the
molecules of the condensation product, W. In multifunctional polymerization, the poly-
mer chains are in general branched and as a result of this the modeling of the reverse
reaction becomes considerably more complex [72—74] compared to those for linear chains
because when W reacts with any on the bonds of the polymer chain, it forms oligomers of
small chains. Let us now consider the reverse reaction of a P, molecule with W.
Regardless of its structure, it has nine bonds where W can react. If Py is linear, there are
two equivalent sites on it which would form P, P,, up to Py, when W reacts with it (see
Fig. 6a). It is thus seen through this example that the number of sites forming species of
lower molecular weight out of the higher ones is independent of the chain structure in
linear polymers. However, for branched molecules this is not found to be so and the
reverse step is found to be chain struocture—dependent as demonstrated below. In Figure
6h, Py, is assumed to be of the star type with four branches of equal length. From the
figure it is seen that a star P;; cannoi break to form P, to Py,. However, it has four
equivalent sites where, by the reverse reaction, smaller molecules P,, P,, P;, Py, Py,
P4, Pi5, and P 4 can be formed. In Figure 6¢, a general branched molecule is shown with
one branch at a given branch point of the chain backbone. It is assumed that there exists an
equal number of repeat units between the two branch points in this structure, Suppose this
molecule has a total of » repeat units and we wish to determine the number of sites on it
where P, will be formed on reaction with W. A term 8, is defined which gives the
number of sites on P, that would give P, (where n < r) through the reverse reaction. This
term accounts for the structural effects; for linear polymers it is equal to 2 for all feasible
n. If in Figure 6¢, P, has b branch points with each segment having x repeat units, it is
found that

Bpsi = Bpn=b+2 ifk=x (18a)
By = 0} ' fmx+D=i=(m+ Dx (18b)
=2 ifl+@m+Dx=i=<(@m+2x (18c)

wherem = 1,2, . ..
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Figure 6 Structures of branched polymer chains.

The structure shown in Figure 6¢ can be further generalized by assuming unequal
lengths of the segments. For any general chain structure, to find 8,_,,,, the (a) location,
number, and lengths of various branches and (b) chain lengih of the molecule must be
known. It is then possible to work out the length of the backbone and determine L -
using a computer program as follows.

We first characterize any branched molecule by dividing it into different segments in
Figure 6d where the molecule is divided into seven segments s, to s,. If each branch is
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" treated as one of the segments, it is then observed that every alternate segment is a branch.
F The total number of segments, n,, and the number of branches, b, are related by

. =20+ 1 {19)
: Since the segments lengths 5; ( = 1,2, . . ., n,) are known, the backbone chain length,
ng, and the location of branch points K, (,m = 1,2, . . . , b) in P, are related by
b
hg = — 2 8o (203)
i=1
K,=K,_ 1+ s t1, Ky=0 (20b)
m=12,...,b

For example, in Figure 6d, s; =2, 5, = 1,8, = 2,5, = 2,55 =1, 55 = 3, and s, = 3. For
 this case backbone chain length 1z is 11 and branch point locations X, are positions 3, 6,
" and & on the backbone.

Te find 8,., ., backbone indices 7, and 1, for the forward and the reverse directions are
defined. These specify the number of repeat units if the backbone is broken at the pth and
gth positions from the forward and reverse directions respectively. As an example, in
Figure 64, if the chain scission occurs at the seventh bond of the backbone, molecule Py,
is formed from this end, and which gives 7; = 10 in the forward direction. As opposed to
this, in the reverse direction, the same bond breakage gives P, and the corresponding
index Iy = 7, For symmetric chains, the values of [, and I, for same p and g are identical;
otherwise they are not. The flow chart for generating these indices is given in Table 1. The
information so generated is used to find 8,_,,,; the algorithm for this is given in Table 2.
To avoid the counting of the available sites twice, scanning of the molecule is done from

- both ends up to its midpoint, Ny, given by

r
Nip = >, "
” =5 r even
i @1)
2

It is evident that the number of possible sites for forming P, (n = 1,2, .. . ,r — 1} and

P,_, out of P, is equal and
Br—)n = 8i"—>(r—n) (22)

The algorithm presented in Table 2 is divided into two major sections. In the first,
branches are scanned to find 8,._,,,. In the second, scanning of the backbone is done from
the forward and reverse directions. Results for 8;,_,,, (n = 1,2, . . ., 16) have been
generated from various chain structures seen in Figure 6 and summarized in Table 3.

For all branched molecules, the following two relations are found to hold always:

r—1
ZI Bpsy = 2r — 1) (23a)
r—1
> ond,,, =r(r—1) (23b)
n=1



Table 1 Generation of the Forward and Reverse Backbone Indices

READ

r : TOTAL GHAIN LENGTH OF POLYMER
b: TOTAL NUMBER OF BRANCHES
sj: SEGMENT LENGTHS, i=,2,...n4

COMPUTE TOTAL NUMBER OF SEGMENTS, ng, AND
BACKBONE CHAIN LENGTH, g

b+

b
HB =T -_Zl:SZi
iz

COMPUTE BRANCH POI‘NT POSITION, Ko(n=1,2,...b) BY
Kos Ko+ 8+t K =20
DEFINE BACKBONE INDEX |, IN THE FORWARD DIRECTION

[ = I,2,...nB
g2 0, @1, 1=I

-

COMPUTE BACKBONE CHAIN IN REVERSE DIRECTION

1 m=l,2,...nB

m ! +
I, =0, i5+=2b, iy=b
- 1
m, = nB+I-—K”
I_ ] ‘ ] . )
T |+|+qs e M1 memti
mEmtl g --s ! YES NO
= iy -1 ’
vl AF
- >0 T sToP
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Table 2 Calculation of B,
_
READ r, Sl ’ I 1 8

j+i

sToP



R Table 2 Calculation of &, from the Knowledge of Backbone Indices Generated from Table 1

READ r, 8, ,1;, & g, |, m=1,2,... ng FROM TABLE II.I
: r/2 FOR EVEN n
Npait = '
{r-1}/2 FOR ODD n

P —
- -

6r—b—r-] =0

"

6r—b-j

[SCANNING OF BRANCHES)

izit2
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T -
' atlf-

L ]
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m=|
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Table 3 Value of 8§,_,, for Different Branched Structures Seen in Figure 6

Bl'?—»n 817-—):1 31'.'—>rz SLT—m 817—»1 817—)}:

n for Fig 6a for Fig 65 for Tig 6¢ for Fig 6d for Fig 6¢ for Fig 6f
1 2 4 5 5 4 3

2 2 4 3 4 4 3

3 2 4 0 2 4 3

4 2 4 0 1 1 3

5 2 0 2 1 0 2

6 2 0 2 1 ¢ 2

7 2 0 2 1 | 0

8 2 0 0 1 2 0

9 2 0 0 i 2 0
10 2 0 2 1 1 0
11 2 0 2 1 0 2
12 2 0 2 1 0 2
13 2 4 0 1 1 3
14 2 4 ¢ 2 4 3
15 2 4 5 4 4 3
16~ 2 4 5 3 4 3

However, the summation 5.~} n28, ., depends on the structure. If the chain structure is
that given in Figure 6¢, then '

r—1

2_‘,1 128,y = Ay Agr? + Agr + Ay (24)
where
(2003 + 2452 + 14b + 2) =
= 255) X
A 3(2b + 1)3 ( .a) ,
4 _ (B G4B5 + 8882 + 32b + 6) | ' o5t 1
2 6(2b + 1)3 ;
o, = (16b* + 3003 + 2612 + 16b + 2) 59 ]
3 6026 + 1)3
4 3 4+ p2 4
A = (2% + 9b3 + b2) 250 |

6(2b + 1)

It is observed that the relations given in Eqs. 25 are independent of the functionality f of
the starting monomer. If there are no inframolecular reactions, there would be if — 2(n — {
1) unreacted Y groups on P,, because for every bond formed, two Y groups are consumed, :
Two reacting molecular species P, and P, have f; = [nf — 2(n — 1)] and f, = [mf — 1
2(m — 1)] unreacted functional groups on them. When they undergo reaction, there are 4

fifo/2 distinct ways by which they can react. The factor of 1/2 is included because the
reactive groups Y are idéntical. For any general species P, produced according to Eg. 3

k-

i
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. the mole balance relation for the step growth polymerization in the batch reactor can now
| be derived as

B _ ot a + 1)[P1]{ > (am + 1)[Pm]} +KIW] 2 5[] (26a)
dr m=1 r=2
n—1
d_[df%] = &, >, (ar + Da(n — r) + 1}P,I[P, ]
=1

~2ky(an + D[P,] X (am + 1)[P,]
m=1

8, nlP,] forn=2 (26b)
1

r=n+

- a=1"2 (26¢)

Equations 26 involve the term 8,._,,,, which is dependent on the number of branches in the
reacting polymer chains. This implies that Eqs. 26 cannot be solved without knowledge of
the chain structure.

! A functional group approach is now discussed in order to find the average branching of

polymer in the reaction mass. Consider a hexafunctional monomer (f = 6). At every
collision of two oligomers, two reactive groups are eliminated to form a bond between
l them. Whenever reactive groups int the middle of the chain undergo chemical reaction, a
B8 branch is produced at that point. A general chain structure produced by the polymerization
} of a hexafunctional monomer is shown in Figure 7. 1t is possibie to follow the course of
polymerization through the functional group approach, which is a generalization of Flory’s
. analysis of bifunctional step growth polymerization.
. in the functional group approach, one defines (f + 1) functional group species in order
B (o follow the polymerization of RY,monomers. As an example, one would require seven
. species A to GG as shown in Figure 8. These differ from each other in terms of the number
F of unreacted reactive groups Y on them. For example, A has all reactive groups unreacted
. and is the same to the monomer while B has one reacted reactive group, C has two, and so
B  on. As species B has only one of its reactive group reacted, it can be situated only at chain
. ends. Species C forms the linear part of the chain, while the other species lead to
branching. It is possible to represent the chain structure of Figure 7 in terms of species B
to G very conveniently.
Various forward and reverse reactions leading to polymer formation involving these

Figure 7 General structure of polymer chain in the polymerization of hexafunctional monomer.
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Figure 8 Structures of functional group species.

functional group species can be easily written and are summarized in Table 4. In writing *
these, it has been assumed that all species are available for chemical reaction with equal
likelihood. It is assumed that species A teacts with C, There is a chemical reaction of . §
reactive groups Y on species A with those of species C; when this occurs, species A would 3
become B because one of its reactive group is reacted while C becomes D for the same §
reason. In view of this, the forward step of the reaction between species A and C can be 3

represented as

k. E
A+C3D+@®) +W @7 |

on the right-hand side B appears in parentheses to indicate that B is not free but is in the

combined state as B—D.

To determine the reactivity k; (see Table 4), it is observed that reaction between any '-
two species occurs only when they collide. If the collision frequency between species A 4
and C is represented Z, . and O, as the probability of reaction between A and C, then

rate M ¢ is given as

Rac = aZxcOuc

where o is the constant of proportionality. For equal reactivity of reactive groups Y, Z,¢
would be given by [(6 X 4)/2Z] where Z is the probability of reaction between Y’s of the
two species A and C. The factor (6 X 4)/2 arises because species A has six and species C 4

(28)

Table 4 Various Reactions ai

" Forward Reactions

k
A+A—§B+(B)+W,
&
A+B->C+ (B +Ww,
ks
A+C——>D+(B)+W,
ky
A+D—E+ (B) + W,
ks
A+E—>F+(B)+W,
kg
A+F—>G+(B)+W,
Ky
B+B->G+(C)+ W,
ks S
B+C—-»D+ @+ W,
ko
B+D—=E+(C)+ W,
ki .
B+E—>F+ (@ + W,
kyy
B+F->G+(@©+ W,
iy
C+C—>D+(D)+W,
k13
C+D—>E+(D)+W,
k4
C+E—>F+ D)+ W,
kls
C+F—>G+(D)+W,
) kg
D+D—>E+(E)+W,
k7
D+E—>F+(E)+W,
k‘lB
D+F— G+ @E) + W,
klg
E+E—=F+ ® + W,

k20
E+FSG+ @)+ W,
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Table 4 Various Reactions of Species A to G

* Forward Reactions

k
A+ASB+(B) W,
k;
A+B—=C+(B)+ W,
ks
A+C—>D+(B)+ W,
ky
A+D—>E+(B)+Ws
kS
A+E—-F+ B+ W,
ks
A+FSG+B+W,
by
B+B—=G+({C)+ W,
kg
B+C—=D+ () + W,
ko
B+D—-E+ (O + W,
k]D
B+E—SF+ Q)+ W,
klI
B+F—=G+ () + W,
fy
C+C>D+ @D+ W,
k13
C+D—=E+ (D + W,
L9
C+E—)F+(D)+ws
kls
C+F""%G+(D)+W5
klé
D+D—E+ B+ W,
kl'i
D+E—F+ () + W,
kyg
D+F->G+ E+ W,
klg
E+E—=F+((F)+ W,

k.
E+F3G+@®+W,

k]_ﬁ;ﬁk
= 6X5,
h_624k
h=6;3k
h—ézzk
P ES
h"5§5k
k 5>2<4k
= 3%3,
km:5§2k
k11=5>2<1k
ku=4;4k
ku—4§3k
km—4;2k
by = 421
km_3;3k
k”_3;2k
kw_3;1k
kw—zzék
km=2§1k
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. Table 4 (Continued)
Table 4 (Continued) ; 3
] } K
N _ix1, E F+ () +WS3E-+E,
F+F=G+ G+ W, ky = 2 A o
3 b 20
3 E F+(G)+W—>E+F,
Reverse Reactions ‘{
4 =Bl ] G+@)+WEE+E
B+ (B)+W—A+A = xx - ) ’
]Cé o [C] kl
B+(C)+Wo=A+B, k=3 Note: XX = [B] + [C] + [D] + [
[ ' o .,
B+ (@) +W>A+C, b= xxk ]
, (E] : - has four reactive groups and
B+ (@®)+WSA+D, K= g ¥ SR (6 X 4)/2. Since the collisi
) _ 1 ¥ [AJIC], it implies that the rea
1 P [F} L
B+ (B +W-—A+E, k5= X% i , by = 04
_ : L =
kéA-i-F k= Gy " 1 2 :
B+G+W-— ’ ¢ XX ' ‘ . where & is the reactivity of
i €] ., _ 1 ¢ forward steps have been deriv
+ W — B + B, k=255 k . 3 The reverse reaction in m
C+(© XX , 1
g D] : ¢ bonds in functional £roup spex
b t=2 sk : e ity arises because we must ha
+(D)+W-—>B+C, kg = 2 ; E ity .
c+OD KX 3 y  one considers bond B-D) reac
& r _ o IEBl o l A, but simultaneously D woul
k=2 ook : . ’
C+@+W—>B+D, ? : even though in reality it is only
Ko o E, : | reaction of any given functions
C+ (F)+W-—B+E, ko =2 % 3 - be available. The reverse react
kh F k.= E]_ I'd kj
C+(@)+W—>B-+F, u XX ] B+M+wW-3A+cC
, D] : 1 b The rate constant for this step i
klz ]C' = 1 kl - ; N N
D+ @+ W—>C+C, 127 7 XX ; ¢ this in terms of the reverse rz
y (E] i condensation product W. To dc
D+ E +W S04 D, ki, = X & ] . species B has only one reactec
(F) p  Teverse rate Ry, is given by
kla P — K E 3 r
D+ (F)+ W—C+E, k14 =3 XX : QRB(D) = k’[B]{W]PE(D)
kis ¢ =[Gl where Py, is the probability of
Ee=3oxk © L) _
D+ +W—C+F BT XX Species can be found adjacent tc
kg P [E] 1 ID
+W-—D+D, ks =4 3 3 P =
E + (B) XX - 3 B(D) [B] + [C] + [D] +
! I r 3 3 - . .
t E+ @)+ W El D +E, ki, =4 )[(—)]( k . ] With this background and the ki
| mole balance relations for thes:
E+(G)+WSp+F, e =4 g3 ¥ j givenby
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Table 4 (Continued)

kg , F] _,

F+ (@ +W~E+E, kw:s)[ﬁk

F+(G)+W~ké->DE+F k=55 p
’ 20 7 XX

kil ! G ¢

G+ +WoSF+F, k21=6§(—)](k

Note: XX = [B] + [C] + [D] + [E] + [F] + [G].

has four reactive groups and the distinct combinations of two Y groups between them is
(6 X 4)/2. Since the collision frequency between species A and C is proportional to
[A][C], it implies that the reactivity k5 for this step is given by

h=6§4k 29)

where k is the reactivity of Y groups. Using similar logic the rate constants of all the
forward steps have been derived and included in Table 4.

The reverse reaction in multifunctional polymerization involves the reaction of the
bends in functional group species with the condensation product, W. However, complex-
ity arises because we must have knowledge of the neighborhood species. For example,
one considers bond B—D reacting with W. In the reverse reaction step, B would become
A, but simultaneously D would become C. Thus it appears to be a trimolecular reaction
even though in reality it is only bimolecular in nature. If atiention is focused on the reverse
reaction of any given functional group species, knowledge of the connecting species must
be available. The reverse reaction step can be written as

kl’
B+M+W>A+C (30)

The rate constant for this step in Table 4 has been shown to be kj and it is desired to write
this in terms of the reverse rate constant &' between given reaction Y group and the
condensation product W. To do so, the reaction is taken as that between B and W. Since
species B has only one reacted bond in it, its reactivity would therefore be k' and the
reverse rate Ry is given by

Ry = K [BIIW1Ppp, (31D

where Py p, is the probability of finding D adjacent to species B. If it is assumed that any
species can be found adjacent to B, this probability term can be approximated as

b - D]
B® "~ [B] + [C] + [D] + [E] + [F] + [G]

(32)

With this background and the kinetic scheme given in Table 4, it is possible to write the
mole balance relations for these functional group species in batch reactors. These are
given by
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A~ —skanmr + K BIDM) @ |
A = skANM] - SHBIMI + 2K ICIW) — & [BITW] a3ty ]
A 2 imiiM) - 26(CIM) + 3¢ DIW] — 2 [CIW] o |
Do - 2apiv + avmiw) - wmIw1 @39
A~ 2o — keI + SIFIW) — 4k (BIW) @0 |
M - emna - E + 6 IGHW) - sk FIW) @
e - oo (%)
M~ rpnf2ar + 2+ 1 + 2o + 24 0
—k'[W]{% + [C] + %[D] + 2[E} + ;[F] + 3[G]} (33h) ;
where :
(M1 = 6[A] + S[B] + 4[C] + 3(D] + 20E] + [F] @i |

Once the concentrations of the functional group species are known the average branches 1

present in the reaction mass can be determined in the following way. Species D, E, F, and
G have 1, 2, 3, and 4 branches, respecitvely. The average number of branches present in
the reaction mass can be given by

D] + 2[F] + 3[F] + 4[G]
E?=1[Pn]

F=

Computations have shown that in multifunctional polymerization, the concentration of the L

higher functional group species E to G are present in negligible concentrations compared

to B to D all the-way up to the gel point. Thus an average structure (as shown in Fig. 6¢) §

can be assumed without introducing any error in computations.

In multifunctional polymerization one is mainly interested in the moments of the "
distribution instead of the entire MWD, Equation 21 can be added according to Eq. 1 for
all n to obtain the moment generation results, With the help of Eq. 47, the following 3

relations are derived:

a ' 1
d—t" = k{ah, + M) + K'[WIA; — Ao) (358) 1
dn,
an 35b) |
a0 - (330)
dn

a!_t2 = 2k(ah, + M)2 + K IWH(A, + DAs + Ashy + Aghg}

o0

+ K [WIA; — Dhs (35¢) 1

Equation 35c¢ is dependent o1
some moment closure relatic
Using the computer algo
vanousn (n = 1,2, ., .,
structures. The table shows
balance relations involve §
affected by the branching, :
strated for the batch polymer
functional group species (Fig
small for the conversion of r
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In Figure 9, concentrations o
of polymerization ¢ as a parz
Examination of Figure 9

E becomes broader. This is exy

larger concentrations and botl
expected to increase. In Figw
for different equilibrivm cons
ible polymerization and for
reactive groups is achieved.

Figure 9 Dimensionless concenir:




(33a)
w1 (33b)
[W] (339
(W] C{33d)

(33¢)
d (33f)

(33g)
)
3G } (33h)

(33)

nown the average branches
rway. Species D, E, F, and
nber of branches present in

(34)
m, the concentration of the
¢ concentrations compared
ture (as shown in Fig. 6¢)
d in the moments of the

ded according to Eq. 1 for
of Eq. 47, the following

(35a)

(35b)

Ao}

(35c)

Kinetic Modeling of Polymerization Reactions / 397

Equation 35¢ is dependent on the higher moment )3 and can be solved only after assuming
some moment closure relation as is done for linear polymerization,
Using the computer algorithm for §,_,,,, r was fixed at 17. This was calculated for

~yarious # (n = 1,2, . . ., 16), and results are presented in Table 3 for different chain

structures. The table shows an extreme sensitivity to the chain structure. Since the mole
balance relations involve §,_,,, the MWD of the polymer is expected to be greatly
affected by the branching. The computation technique outlined here has been demon-
strated for the batch polymerization of hexafunctional monomers. For this we need seven
functional group species (Fig. 8); their numerical solution shows that the total branching is
small for the conversion of reactive groups below the gel point. With the information on
average branching so generated, it is now possible to determine the MWD of the polymer.
In Figure 9, concentrations of P, species versus chain length n were plotted with the time
of polymerization ¢ as a parameter.

Examination of Figure 9 reveals that as the reaction time ¢' increases, the MWD
becomes broader. This is expected with increasing time, higher oligomers are formed in
larger concenirations and both the average chain length and the polydispersity index p are
expected to increase. In Figure 10, the MWD of a given time of polymerization is plotted
for different equilibrium constants, K. As K is increased, the reaction is closer to irrevers-
ible polymerization and for a given time of polymerization, a higher comversion of
reactive groups is achieved. This would in turn imply that the MWD would become

o 2 4 6 8 10 12 % W B 20
n

Figure 9 Dimensionless concentration of P, species versus n (¢ varies from 0.0102 to 0.0502).
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Figure 10 Dimensionless concentration of P, species versus # (K varies from 0.0 to 20).

broader for increasing K, which is indeed seen in this figure. From the MWD results, itis 4
possible to calculate the moments Ay and X, (defined in Eq. 1). Theoretically (also found ;
computationally), the first moment X, is time invariant; thus the number and weight 3
average chain lengths ., and w,, and the polydispersity index p can be determined. It is §
found that the overall polymerization is limited by equilibrium conversion, which in- §
creases with increasing K. It is further observed from Eqs. 18 that for a given r, 3,_,, 15 3
(v + 2) for small n, which implies that as the degree of branching b increases, smaller }
chains (and therefore large chains due to symmetry) are formed preferentially, This would §
give rise to a higher polydispersity index compared to those formed from irreversible 3
polymerization at the same conversion of reactive groups. An an example, for K = 0.1, at §
conversion of 13,87% the polydispersity index is 2.10; for the same conversion for 4

irreversible polymerization it is 1.89.

In deriving an expression for 27} n23,_,, in Egs. 25, a specific chain structure as in 3
Figure 6¢ was assumed. Computations for noninteger segment length x and noninteger .
number of branches were tested against wide variations of parameters. Noninteger x in §
actuality amounts to stating that all segment lengths are not of equal length. If the chain
length r and the number of branches & (whole numbers here) are given, x can be calcu- §

lated as

Tt 1

r—b (36)
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§ If x calculated this way is a noninteger (say 6.7), the lower integer value x* of x is chosen
(in this case 6) and r* is calculated as

= (2b + Dt @37

The remainder (# — #*) repeat units are distributed on various chain segments. For this
chain structure, 9,._,,, can be compuied using the algorithm of Table 2. On comparing the
exact ¢z} a23,_,, with that determined from Eq. 24, results are found to be within 1%.
On similar testing for fractional branching b, the discrepancy between the exact results
and those from Eq. 24 is negligible.

The generation relation for the second moment A, in Eqs. 26 involves third moment
\;. To solve it, a moment closure relation for A; is needed. If the polymerization is
assumed irreversible, the MWD in multifunctional self-polymesization can be solved
exactly and is given by

) {nf — DN
Py nl{(f— 2n + 21

where p is the conversion of reactive groups. From this, the third moment for the
polymerization of hexafunctional monomers can be derived as

_(+p—Tp*+5p°) + {1 — 5p)2pry
(1 — 5p)y?
which can serve as a moment closure approximation. From the numerical solution of the

MWD relations given in Eqs. 26, one can also find Ay, A;, Ay, and ks and curve-fit these
results using the empirical relation

fpn—l(l — p)n(f—2)+2 (38)

A (39)

Inis=a +a,lnhg+a;Ink, : (40)
where a; and a; are the curve-fit constants to be determined. On doing this we find that
_1.036 M ' il

3 N2-67 (1)

With the moment closure approximations in Eqs. 39 and 41, Eq. 35¢ has been solved for
), and its values compared with those found from the MWD results. It is found that for a
given K, Eq. 41 serves as a good approximation provided the conversion is well below the
gel point conversions. As the gel point conversion is approached, Eq. 39 serves as a good
representation, as can be seen in Table 5.

With the developments outlined in this work, it is now possible to analyze the equi-
librium in multifunctional step growth polymerization. Since at equilibrium the MWD is
stationary, their moments would also be time invariant, or d\,/dt = 0 (i = 1,2. . .). From
Eq. 35a, for the zeroth moment, we obtain

&k [WIy — M)

K — =
o (an + o)

(42)

Since the condensation product does not leave the reaction mass, the stoichiometry of the

polymerization for A§ moles of monomer initially present is given by

Wl =23 — 2 [P,]=20— ) (43)

n=1
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Table 5 Comparison of A, Values Obtained by Using Three Different h, Expressions Given by For Ay = 1, the equilibrivum

Egs. 39-41 e o = VE
A, Values 3 ' “ . 1+ VK
Conversion Using Flory-Schulz ~ Using Stockmayer  Using Eq. 41 4 The second moment A, at e
Time (%) By MWD relation for A, relation for A, for As i 3 A — A
. ] 2ak, + N2 +
For K = 0.1 K
0.0012  0.3586 1.02191 1.02191 1.02192 1.02191 3 + o =
0.0102  2.9600 1.20845 1.20860 1.20852 1.20841 1 K
0.0202  5.6483 1.47215 1.47379 1.47255 1.47217 § 1 . .
0.0302  8.1048 1.81644 1.82477 1.81760 1.81718 | InFigure 11, equilibrium cc
0.0402  10.3214 2.27229 2.30387 2.27445 227703 4 ¢ reveals that it is independe
0.0502  12.2970 2.87917 2.98653 2.88106 2.90465 3 | mmcreased p, is increased,
0.0552  13.1950 3.25250 3.44561 3.24940 3.30720  § - gelation would occur for he;
0.0592  13.8720 3.58946 3.89488 3.57228 3.68610 1 In Table 6, equilibrium
For K = 0.02 i two-moment closure relatio
0.0012  0.358623  1.02191 1.02191 1.02192 1.02191
0.0102  2.92437 1.20550 1.20619 1.20583 1.20530
0.0202  5.40353 1.44374 1.45101 1.44552 1.44374
0.0302  7.40084 1.70129 1.73204 1.70549 170354 - 1
0.0402  8.92173 1.95266 2.03790 1.95538 196110  } . 0 ————
0.0502  10.03150 2.17232 2.35367 2.15412 219105 4
0.0602  10.81690 2.34623 2.66384 2.25357 237800
0.0702  11.3609 2.47397 2.95522 2.19925 2.51586
0.0802  11.7348 2.56466 3.21877 1.92928 . 2.60380
0,0902  11.9599 2.61093 3.44994 1.38786 2.65666
0.1052  12.1603 2.65038 3.73493 0.065054 2.67934 0151
For K = 0.01
0.0012  0.3585 1.02190 1.02191 1.02192 1.02190
0.0102  2.88118 1.20194 1.20329 1.20258 1.20155 T
0.0202  5.13143 1.41337 1.42601 1.41643 141322} i o
0.0302  6.70479 1.60084 1.64567 1.60678 1.60344 A
0.0402  7.70824 1.74085 1.84022 1.74353 1.7483 010
0.0502  8.31215 1.83239 199886 1.86508 1.84459
0.0602  8.66409 1.88767 2.12117 189569 1.90176
0.0702  8.85234 1.91398 2.21235 1.94470 1.93246
0.0802  8.95715 1.92876 2.27917 1.90999 1.94689
0.1024  9.05435 1.94282 2.36902 1.86951 1.95117
0.1194  9.07846 1.94649 2.40623 1.64685 1.94443
For X = 0.0025 0-05p--
0.0012  0.35802 1.02187 1.02188 1.02192 1.02183
0.0102  2.65117 1.18330 1.18779 1.18540 1.18185
0.0202  4.00993 1.29997 1.32615 1.30607 1.29796 4
0.0302  4.51773 1.34784 1.40186 1.35533 1.34683 ]
0.0402  4.68372 1.36373 1.43904 1.36922 1.36377 ] :
0.0502  4.73626 1.36872 1.45737 1.36957 1.36941 : 0, ' 1 L '
0.0602 475310 1.37031 1.46673 1.36426 137150 § 001 002 0«
0.0702  4.7580 1.37084 1.47167 1.35543 137223 § 3
0.0762  4.76011 1.37098 1.47346 1.34855 1.37243 4 | Figure 11 Bquilibrium convers:




ifferent X, Expressions Given by

£

ing Stockmayer  Using Eq. 41

elation for A, for h;
1.02192 1.02191
1.20852 1.20841
1.47255 1.47217
1.81760 1.81718
2.27445 2.27703
2.88106 2.90465
3.24940 3.30720
3.57228 3.68610
1.02192 1.02191
1.20583 1.20530
1.44552 1.44374
1.70549 1.70354
1.95538 1.96110
2.15412 2.19165
2.25357 2.37890
2.19925 2.51586
1.92928 2.60580
1.38786 2.65666
0.065054 2.67934
1.02192 1.02190
1.20258 1.20155
1.41643 1.41322
1.60678 1.60344
1.74353 1.7483
1.86508 1.84459
1.89569 1.90176
1.94470 1.93246
1.90999 1.94689
1.86951 1.95117
1.64685 1.94443
1.02192 1.02183
1.18540 1.18185
1.30607 1.29796
1.35533 1.34683
1.36922 1.36377
1.36957 1.36941
1.36426 1.37150
1.35543 1.37223
1.34855 1.37243
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For A = 1, the equilibrium conversion Peq €an be obtained as

= 1+ VK
The second moment A, at equilibrium can similarly be obtained by setting d\,/dt = 0, or
)\g — Ay
Z(QAZ + RI)Z + T" {(AZ + l)hz + Aa)\l + Aq)\g}
0 —_—
+ O‘OT"O) (A; ~ DA =0 | (45)

In Figure 11, equilibrium conversion p,, has been plotted as a function of K. Equation 4'4
reveals that it is independent of branching and is a monotonic function of K. As X is
increased p., is increased, and for X = 0.0625, p.o~= 0.20, which woulld mean that
gelation would occur for hexafunctional menomers for any & greater than this value.

In Table 6, equilibrium weight average chain length p., has been computed for the
two-moment closure relation in Eqgs. 34 and 41. This table reveals that results are ex-

0-20F
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Peq.

010

0-05

] ] ! 1 ! I
0O o1 0062 003 004 005 006 007

K

Figure 11 Equilibrium conversion, p., versus K.
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Table 6 Comparison of .y ., Using Three Different

Correlations for A, Given by Egs. 39-41

e !""W,eq l"‘w,eq
K usinz“ﬁqq. 39 using Eq. 40 using Eq. 41

b= 0.02
0.010 2.586 —4.293 —0.661
0.012 2.933 —10.293 1.579
0.020 4.910 111.668 3.168
0.030 11.585 111.879 4.626
0.040 44 .02% 112.202 6.609
0.050 213.104 113.728 9.291
0.060 216.323 | 308.177 12,998
0.062 216.611 4470.830 13.901
b= 0.03
0.010 2.652 —4.230 5,774
0.012 3.010 —10.3%0 5.861
0.020 5.117 75.489 6.244
0.030 12.753 75.721 6.854
0.040 20.243 76.118 7.729
0.050 275,248 78.217 9.119
0.060 2717.955 302.607 12.564
0.062 278.211 4560.400 13.444
b =0.05
0.010 2.759 —4.0890 6.273
0.012 3.147 —10.4786 6.358
0.020 5.511 706.251 6.723
0.030 15.401 706.423 7.292
0.040 106.837 706.601 8.083
0.050 125.055 707.048 9.285
0.060 127.121 739.031 11.848
0.062 127.333 3491.830 12.688
b=10.1
0.010 2.947 —3.686 5.653
0.012 3.393 —10.048 5.751
0.020 6.317 114.000 6.125
0.030 24.130 114.204 6.662
0.040 92.917 114.502 7.390
0.050 99.406 115.878 8.480
0.060 100.803 289.511 10.679
0.062 100.961 4244 030 11.454
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emely sensitive to the closure approximation. It was observed earlier that as X ap-
Boaches a value of 0.0625, for hexafunctional polymerization gelation would occur and
iy — . According to this table the moment closure in Eq. 41 gives finite fLy,, while
ti’at in Eq. 39 gives a high value. This implies that the empirical relation in Eq. 39 does
Mot yield satisfactory resuits near the gel point.

DICAL POLYMERIZATION

nlike step growth polymerization in which the reaction occurs between the functional
broups, in chain reaction polymerization the monomer polymerizes in the presence of
(compounds called initiators. The initiator continually gemerates growth centers in the
saction mass, and monomer noolecules are rapidly added. Tt is this sequential addition of
onomer molecules to growing centers which differentiates chain reactions from step
owth polymerization.

£ The growth centers can be ionic (catlomc and anionic), free radical, or coordinational
Ein nature depending on the kind of initiator system used. Based on the nature of the growth
3 nters, chain reaction polymerization is further classified as radical, cationic, anionic, or
£ coordination {or sterecregular) polymerization [75]. Radical polymerization is ufilized
K considerably more in industry and the discussion in this section is confined to radical
lymerization.

Initiators for radical polymerization generate free radicals in the reaction mass. There
o two types of radicals present in the reaction mass during polymerization:

1. Primary radicals, which are generated by initiator molecules directly.

) Growing chains radicals, which are generated by the reaction between the primary
radicals and the monomer molecules.

I The growing chain radicals keep adding monomer molecules sequentially; this type of
b reaction is known as propagation. Reaction between a primary radical and a polymer
€ radical or between iwo polymeric radicals makes polymer radicals unreactive by destroy-
" ing their radical nature; such reactions are called termination. There are thus five kinds of
i species in the reaction mass at any time: initiator molecules, monomer molecules, primary
- radicals, growing chain radicals, and terminated polymer molecules. In order to model
E: (adical polymerization kinetically, the various reactions—initiation, propagation, and
¥ termination—must be understood.

. Initiation

The molecules of initiator {denoted by I,} can generate radicals by a homolytic decom-
position of covalent bonds on absorption of energy, which can be in the form of heat,
light, or high-energy radiation, depending on the initiator employed. Commercially, heat-
sensitive initiators such as azo or peroxide compounds are employed. Radicals could also
be generated between a pair of compounds, called redox initiators, one of which contains
an unpaired electron. During the initiation, the unpaired electron is transferred to the other
compound {called the acceptor), which undergoes bond dissociation. An example of
redox initiators is a ferrous salt with hydrogen peroxide. In this section, however, only
heat-sensitive initiators are discussed primarily because of their extensive use in industry.

The homolytic decomposition of initiator molecules can be represented schemati- j
cally as |
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e
1, 21 (46)

where I, is the initiator molecule and I, the primary radical. The rate of production of
primary radicals, r; according to Eq. 46, is :

r = 2kl (47

where [I,] is the concentration of the initiator in the system at any time.
The primary radicals, I, combine with a monomer molecules, M, according to the
schematic reaction

ky
I+M - P, (48)

where P, is the polymer chain radical having one monomeric unit on it and k, is the rate
constant of reaction. The rate of production, r;, of the polymer radicals, P,, can be
written as

7, = ky[T1[M] (49)

where [1] and [M] are the concentrations of the primary radical and the monomer in the
reaction mass, respectively.

Equations 47 and 49 imply that all the radicals generated by the homolytic decomposi-
tion of initiator molecules are used in generating the polymer chain radicals and no
primary radicals are wasted by any other reaction. This is not true in reality and an
initiator efficiency is defined to take care of the waste of primary radicals. The initiator
efficiency, f, is the fraction of the total primary radicals produced by reaction 46 which are
used in generating polymer radicals by reaction 48. Thus the rate of generation of polymer
radicals is given by

r; = 2fkgll,] (50)

Sometimes a solvent is added to the monomer for better temperature control. This has
been shown to affect the initiator efficiency and is explained in terms of the cage theory
[76, 77]. On supplying energy to initiator molecules, cleavage of a covalent bond occurs
as shown in Eq. 46. According to this theory, the two dissociated fragments are sur-
rounded by the reaction mass, which forms a sort of cage around them. The two fragments
stay inside the cage for a finite amount of time during which they can recombine to give
back the initiator molecule. The fragments that do not recombine diffuse, and the sepa-
rated fragments are called primary radicals. If the monomer molecule is highly reactive, it
can also react with a fragment inside a cage. The characteristics of the reaction medium
determine how long the dissociated fragments stay inside the cage and they also affect the
initiator efficiency. It is therefore expected that, if all other conditions are equal, a more
viscous reaction mass would lead to a lower initiator efficiency.

Propagation Reaction

The propagation reaction is defined as the addition of monomer molecules to the growing
polymer radicals. In the reaction mass there are polymer radicals of all possible sizes. In
general, a polymer radical, P,,, indicates that there are # monomeric units joined together
by covalent bonds in the chain radical. The propagation reaction can be written schemat-
ically as

k
P,+MZEp

n+1»
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kn
P,+M3P,,, n=12... (51)

where &, is the rate constant for the reaction between P, and a monomer molecule, M. In
general this would depend on the size of the chain radical. It is not difficult to foresee the
increasing mathematical complexity resulting from the multiplicity of the raie constants.
As a good first approximation, the principle of equal reactivity is assumed to be valid even
in the case of polymer radicals, which means that

(32)

kp1=kp2=kp3=-.-=kpﬂ=kp

Termination of Polymer Radicals

The termination reaction is the one in which polymer chain radicals are destroyed. This
can occur only when a polymer radical reacts with another polymer radical or with a
primary radical. The former is called the mutual termintion and the latter primary termina-
tion. These reactions can be written as

kl A,

Pm + Pn s Mu+m (538.)
kf. T,

P, +1-3M, (53b)

wherem, n = 1,2,3, . . . . M,,.,, signifies a dead polymer chain, i.e., it cannot undergo
any further propagation reaction. In the case of mutnal termination the inactive polymer
chains can be formed either by combination or by disproportionation. In combination
termination, two chain radicals just combine to give an inactive chain, whereas in dis-
proportionation, one chain radical gives up an electron to the other and both chains
become inactive. These two types of termination can be represented by

2r{m,n}

k,
P,+P,— M, (combination) (54a)

m n

l’c.'d'(m. Yy

rP,+P, —M, +M, (disproportionation) (54b)

where K.y and kg, ., are the rate constants for termination by combination and
disproportionation, respectively. Once again, the principle of equal reactivity is assumed
to hold: all the rate constants are independent of the chain lengths of the polymer radicals,

i.e.,

krc(m,n) = k;c ) (553.)

Kismmy = kg~ form #n (55b)
k.

krc(m.n) = é_ (SSC)

Foaommy = f for all m = n (55d)

Various reactions occurring in radical polymerization are summarized in the Table 7
[1, 3]. The intermediate species present at the time in the reaction mass are I, Py, P,, P3,
etc., and the mole balance equations for each of these and the initiator molecule I, in a
batch reactor can be written as

d
Rl _ 1 (562)
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Sk (56b
€@=ymu—hmmywuu29ml (56b)
dt m=

APL) _ e IIMI — &, [P,1IM] — &, [P 1(T]
ai (56¢)
—k[P, 12 + [P,1[P,] + [Py1[Ps] + - - -} :
APl _ 1 IMIIP, ] — &, [MIIP,] — &, [P,]I] |
e ) (56d)
—EA{PIP,] + [P IP,] + « - + [P,2 + - - -}
where ' (56¢)
k; = k:c + fd

If [P] is defined as the total concentration of polymer radicals in the reaction mass, then

0

(57
[P] = [P,] + [Pl + - - - = 2 [P,]

n=1
and Egs. 56c, d, and e can be added to give the rate of production of [P] as

diPl _ d 3z, [P,]

= ki[1M] — kg [XIP] — & [P]? (38)
dt dt

Table 7 Reactions Occurring in Radical Polymerization

Initiation:
kl
1, — 21
ky
I1+M—P,
Propagation:
k
P,+M3P.,., m=12,...

Termination:
Primary:

ky, .

P,+t1I—M, 1,2, ...

Combination:

8
i

n

& =12, ...
Pm + P.u - Mm+u m ¥ i, mn 1, H]

Disproportionation:

&, B
Pm + Pn ‘_d> Mm + Mnm 7 n, mi= 1:2: e

K2
P, + P, — 2M m=12,...

m

The corresponding relatic

d
-% = —k[I,]

d[l
Lol - 1y

The study of Eqs. 58 an

equations can be derived {
ization,

Initiation:
by
I, — 21

&
Iz‘f‘M—)P

Propagation:

kp
P+M Sp

Termination:

ky, .
P + I - dead chains

ks2 _
P + P —5 dead chaing

K2 _
P + P — dead chaing
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Eqs. 60. Thus the concentratis

(M] > [P] > (1)




(56h)

{56¢)

"} (56d)

{56e)
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(57
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The corresponding relation for the initiation steps can be written from Eqs. 56a and b as

dfl
Al i (59)
d[l
B 2ttt - km - i ipy (59)

The study of Eqgs. 58 and 59 reveals that these involve only [P]. An identical set of
equations can be derived from the following siniplified mechanism of the radical polymer-

- ization.

Initiation:
Iy
I, — 21 (60a)
k
L+ M—P (60b)
Propagation:
kﬂ
P+M-5P (60¢)
Termination:
. N |
P + I -% dead chains (60d)
k42
P + P — dead chains (60e)
Kzl 2. .
P + P — dead chains (601)

The kinetic equivalence of the mechanisms given in Table 7 and Eqs. 60 is thus
established. The replacement of a complex series of equations given in Table 7, where
each molecular species in the reaction mass is distinguished by the far simpler Egs. 60, is
analogus to simplification of the complex reactions involving individual species in step
growth polymerization by the reaction between reactive groups. Indeed, both these sim-
plifications are a direct consequence of the equal reactivity hypothesis.

The mole balance equations can be simplified even beyond the simplification achieved
in Egs. 58 and 59. Since the number of monomer molecules in the reaction mass is
generally much higher than the number of polymer radicals,

ki M] > ki, [P] i 1)
Eg. 59b can be written as

dl1

B = 2w - mov 62)

Also, in radical polymerization the slowest reaction is the dissociation of initiator mole-
cules, and as soon as a primary radical is produced, it is consumed by reactions b and ¢ of
Eqgs. 60. Thus the concentration of 1 is expected to be much less than that of P, i.e.,

[M] = [P} > [1] (63}
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and Eq. 58 can be rewritten as

d
A iy - K - 64

Equations 62 and 64 imply that the primary termination step, Eq. 60d, can be neglected in

he kinetic mechanism.
The rate of monomer consumption r, for radical polymerization can now be derived

from Eqs. 60b and ¢ and approximated as
r, = k,[PI[M] ' (65)

To find the total concentration of chain radicals, P, in the reaction mass, the steady-
state approximation is used {78]. From Eq. 62,

dll
A — 2ty - & MIM = 0 (©6)
2flall,] 1
I = 22 67)
(1] K [M] (
Similarly, from Eq. 64,
d[p f
M o - kPP =0 ©8) |
and from Eqs. 67 and 67, 4
kA1, 112 _ 4
[P] — fklgc,z:l (69) .f
t
The rate of propagation after some induction time is thus given by
2 1/2 4
r, = kp{lklg—zl—}[M] . (70) §
t E

Average Molecular Weight in Radical Polymerization

Average molecular weight in radical polymerization can be found from the kinetic model, ;

Egs. 60, as follows. The kinetic chain length, v, is defined as the average number of

monomer molecules reacting with a polymer chain radical during the latter’s entire life- §
time. This is the ratio of the rate of consumption of the monomer, to the rate of generation

of polymer radicals, r;:

}u‘{

p =

-

From the steady-state approximation, the rate of initiation, r;, should be equal to the 5_

rate of termination, r,. Therefore,

o kB kP
On eliminating [P] with the help of Eq. 69, 1 is given by

14

T @kl )2 1)

a §

1, _ kIMIP] _ K IM] a3

k, M) e}
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Equation 73 shows that the kinetic chain length reduces with increasing initiator con-
centration. This is expected since an increase in [I,] would lead to more chains being
produced.

The quantity that is of interest is the average chain length, p,,. This is directly related to
v becanse ., gives the average number of monomer molecules per dead polymer chain
whereas v gives the average number of monomer molecules per growing polymer radical.
To be able to find the exact relationships between the two, the mechanism of termination
must be carefully analyzed. If the termination of polymer radicals occurs only by com-
bination, then each of the dead chains would consist of 2v monomer molecules. If
termination occurs only by disproportionation, each of the inactive polymer molecules
would consist of v monomer molecules. If termination occurs by both these mechanisms,
then

W, = ov (14)

where oo would be between 1 and 2.

As the initiator concentration is increased, the rate of polymerization goes up (Eq. 70),
but v, and therefore ., goes down (Eq. 73). Therefore, control of the initiator concentra-
tion is one way of monitoring the molecular weight of the polymer.

Another method for controlling the molecular weight of the polymer is the use of a
transfer agent. The polymer chain radicals react with the transfer agent and lose the
capacity to add any further monomer molecules, the molecule of the transfer agent
acquiring radical character in this process. The latter can grow by adding monomer
molecules like any other growing chain in the reaction mass. The transfer reaction is
represented schematically as

kﬂ'
P,+S-3M,+P, n>1 (75)

where S is a molecule of the transfer agent.

Equation 75 should be added to the kinetic model if radical polymerization is being
carried out with a transfer agent. Since the transfer reaction occurs with equal likelihood
in the reaction mass, it is not necessary to distinguish chain radicals kinetically from each

.other once again, and Eq. 75 can be included in the following form in Eqgs. 60:

b,
P+S M, +P (76)

Since this reaction does not reduce or increase the total number of chain radicals in the
reaction mass, from Eq. 65 it follows that the presence of a transfer agent does not affect
r,. However, the kinetic chain length, v, changes drastically depending on the value of
k. s and [S]. Equation 72 can easily be modified to account for the presence of transfer
agenfs:

¥

— o
" T KPP + &, 5IPIIS] D
or on taking the reciprocal
1_ kaslS] | @k (1] o)
v k,[M] k, M]

Equation 78 predicts a decrease in ., with increasing concentration of the transfer agent.
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Chain transfer reactions occur quite commonly in radical polymerization with initiator

as well as monomer as follows:
With initiator:
ktr'[-z
P, + I, = MmI+1 (79
With monomer:

kl'r
P, +M-5M,+P (30)

These reactions can be similarly incorporated into the kinetic model and the average chain
lengths can be found to be
1 8] Kk r ( ki ) 2
L =Cyt+ Gt o+ C —L— (81)
ap, MM R IMPE Tk M
where ‘
Cw = Fursa (822)
kp
c, = Fn (82h)
kp
CS = ktr.S (826)
ky

Gel Effect in Radical Polymerization

The considerable increase in the rate of polymerization (as shown in Fig. 12 [75]) and the
average chain length, p, (Figure 13 [80]) is a phenomenon common to all monomers

1001 80% 60°%
c 100, 40°%
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£ 80fF o -
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| polymerization with initiator S 18é° |
]
(79 .
E 170 =
] o
; 3
®0) "
s model and the average chain 3
Jdeo
(81} l
(822) J20
= )
< :
(82b) 4 =2
82 3
- 3 § 1 L 0
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% conversion

hown in Fig. 12 [75]) and the

Figure 13 Average molecular weight as a function of conversion in the polymerization of methyl i
m common to all monomers

. methacrylate at 60°C and 0.0045 mol % initiator. (Reprinted from Ref. 83, with permission of ACS,
A i Washington.)

. undergoing radical polymerization at low temperatures and is called the autoacceleration, |
SR  or gcl effect. This has been a subject of several studies [81-95] and has been atiributed to '
_40% L the fall in values of the rate constants, k, and k,, as shown for methyl methacrylate in |
—20%, ‘ SN Figure 14. It is also seen that the rate constant &, is affected first and falls in magnitude
—10% : SIS considerably faster than k,. The large fall in &, can be explained by observing that the
S termination step involves the diffusion of two polymer molecules from the bulk to each
[ other’s proximity. Once the proximate pair has been formed, the radical segments must
i f undergo segmental diffusion before the termination reaction can occur. The fall in k,
i occurs because the segmental diffusion becomes sluggish with the increase in the viscosity
‘ . of the reaction mass. On the other hand, the propagation reaction involves the diffusion of
\ 4 small molecule (i.e., monomer) from the bulk to the radical segment. There is liitle
; & segmental diffusion involved in this step, thus leaving k, unaffected up to considerably
0—"' B  higher conversions.
; During the course of free radical polymerization from the bulk monomer to complete or
limiting conversion, the movement of polymer radicals toward each other goes through
several regimes of changes. To demonstrate this, attention is focused on a solution

ith benzoyl peroxide initiator at
: consisting of dissolved, nonreacting polymer molecules. When the solution is very dilute,
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O [e]
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Conversion, %

Figure 14 Bulk polymerization 25°C with AzDN initiator. The rate of initiation is 8.36 X 10~
moles L sec—L,

the polymer molecules exist in a highly coiled state and they behave like hydrodynamic
spheres. In this regime, polymer molecules can undergo translational motion easily and
the overall diffusion is completely governed by polymer—solvent interactions, As the
polymer concentration is increased (say beyond a critical conversion C*), the translational
motion of molecule begins to be affected by the presence of other molecules. This effect,
which was absent earlier, constitutes the second regime. On increasing the concentration
of the polymer still further (say beyond C*%*), in addition to the intermolecular inter-
actions in traaslational motion, polymer chains begin to impose topological constraints
upon the motion of surrounding molecules due to their long-chain nature. In other words,

polymer molecules begin to be entangled. DeGennes modeled the motion of polymer ]

chains in this regime throngh a *“tube”” defined by the points of entanglement. A polymer

molecule can move through this only by a snakelike wriggling motion along its length; -
this mode of motion is sometimes called reptation. Finally, at very high concentrations
(say beyond C***), polymer chains begin to exert direct friction upon each other. The ]
values of C*, C**, and C*** have been experimentally shown to depend on the molect- i

lar weight of the polymer,

To demonstrate the correspondence between the polymer solvent system described
above and free radical polymerization, Turner [90] and Driscoll’s group [82, 91-93] ;
demonstrated that gelation starts at the polymer concentration of C**. In fact, it has been §
shown that &, changes continuously as the polymerization progresses [89, 95], first in- {
creasing slightly but subsequently reducing drastically at higher conversions. Tulig and §
Tirrell [89, 95] have argued, based on their experimental and theoretical analysis, that §

similar regimes for &, must exist in the entire range of conversion.
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Based upon the foregoing physical picture of the gel effect, a model was proposed by
Cardenas and Q’Driscoll [82, 91, 92] in which two populations of radicals are assumed to
exist in the reaction mass. The first are those which are physically entangled (denoted by
P,,) and therefore have lower termination rate constant (k,,), compared to that (k,) of the
second population (denoted by P,), which are untangied. Whenever a polymer radical
grows in chain length beyond a critical value r., it is assumed that it becomes entangled
and its termination rate constant falls from %, to k,,. If it is assumed that the propagation
rate comstant, k,, is not affected, the overall mechanism of radical polymerization can
then by represented as follows:

Initiation:
1, —ﬂc—1> 21 (83a)
k
1+ M—P, (83b)
Propagation:
kp
Pu +M— Prz+1 (83(3)
k,
P,. + M — Py (83d)
Termination:
k,
Pm + Pn - Mm + Mn (838)
kC
P, + P, — M, +M, (83f)
kf(’
Pme + Pne — Mm + Mn (83g)

In the above scheme, the reaction between the entangled and the unentangled radicals has
been assumed to occur with rate constant &, lying between k, and k,,. The mole balance
equations for the various radicals can be easily written from the kinetic mechanism given
above, and for baich reactors '

% = Ufiqlly] — {k,[M] + 2&[P] + 2k [P.IHP:] (84)
é[dpz_"] = MI[P,_,] — {k,IM] + 2&,[P] + 24, [P, ]}P,], 2=n=n, (85)
"‘% = GMIPp-n.] — {5 IM] + 2Kk, [P] + 2k [PIHP),  n. > 1, (86)
where |
CEDA -
RI= 3 B -

n=n_+1
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Since the total reaction time is usually much larger than the individual radical lifetime, the
steady-state approximation can be assumed to valid here. On summing Egs. 84 and 85 for
values of # up to n,, one gets

(L] + k,[M] 22 [P,

H=

~ {6IM] + 262 + 2,21} 3 = 20 g (38)

or

k(L) — {2k,[P] + 2k, [P.INP] = &,IM][P,] (89)
It is assumed that ,, is the geometric mean of k, and k,,, i.e.,

ke = {kk )12 = Bk, (90)
where |

k 1/2

8= (k—'t") (91)
With the help of Eq. 90, Eq. 89 is simplified to

21,1 — 2&{[P] + 3[P.IHP] = &,[MI[P,.] 92)

Similarly, Eq. 85 is added for all values of n above n, assuming the steady-state approxi-
mation is valid. On doing this, the following relation is obtained:

]

k,[M] =2+1 [Po—nel = {6, [M] + 2&,[P] + 2k, [P} >, [P]

n=r1c+
— d[Pe] . :
“Ta 0 ©3
which simplifies to
28kA[P] + 8[P,]} = k,[M][P,] (94)
Equating the left-hand sides of Egs, 92 and 94,
L1 2 :
[P} + B8[P,] = {f%} (95)
t

It is now necessary to define the probability of propagation to find the distribution of
P,,. After a polymer chain radical is formed by the reaction between a primary radical and
a monomer molecule, it can either propagate by reaction 83c and d or be terminated by
transfer or mutual termination reactions 83e, f, and g. Therefore, the probability of
propagation, {3, for chain length less than #. is found as

_ k,[M] _ 1
kM) + 2k,[P] + 2k, [P,]1 1+ {k,flall,)/62[M]2}2
where the transfer reactions have been neglected. Under the steady-state approximation,

diP,]/dt is set equal to zero inEq, 85. It is recognized that P, is formed only when there is
a propagation reaction with P, or

n—1>»

B (96)

[Pn] = B[Pu"-l] for
Similarly, from the steady-
2
p,] = 2falL]
kM
With the help of Egs. 97 a
2fl15]
[P,] = pn 20E2]
nl = B & IM]
It is observed that B is
approximated by (8 — 1yB

A" = exp(n In B) = ex;

where
L z{szkr[lz]}m
v kg m]z

and is the same as the kinetin
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- (B

¥
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P.] = {fﬁfi]}]lzexp( -
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[Pn] = BEPH*I] for n= R (97)
Similarly, from the steady-state approximation, d[P,]/dz is equal to zero and Eq. 84 gives
2l ] ‘
Pl = —— 98)
U kM)
With the help of Egs. 97 and 98, one finds .
2iall,]
P.1=@" 99
P = B h ©9)

It is observed that B is a quantity close to unity, which implies that In B can be
approximated by (B — 1)/P and the term [(* can be rewritten as

B" = exp(n In B) = exp{—n ﬂ;—l)} = cxp(—%) (100)
where )

1 [k fhlla] 12

v 2{ 2MP2 } (101)

and is the same as the kinetic chain length defined in Eq. 73. [P,, ] can now be calculated
from Eq. 99 and substituted in Eqgs. 94 and 95 to obtain

- (- of 2]
and

p,] = {f%fz]}mexp(— %) : (102b)
The rate of polymerization, r,, can now be defermined as

r, = k,IMKP] + [P,]} = kpﬂ\/l]{f%fz]}m [1 41 S d exp(-“%:)] (103)

The monomer conversion, x, as radical polymerization is defined in terms of monomer
concentration initially present in the reaction mass, [M]y, and that at any reaction resi-
dence time, [M]. This is given by

M]o — [M]
= —— (104)
[M]p
Equation 103 can now be written in terms of the monomer conversion, x, as
dx {jkl[lz]}m [ 1-3% ( nc)]
= L1 — x) 3 5 SXP\ 7T (105)

To solve for the rate of polymerization at a given conversion, x, it is necessary to
determine 8 and »,. From rheological studies, the relation between critical number aver-
age chain length p,,. and the volume fraction ¢p of polymer present in solution is given by

K. = pdp (106)
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K. is a constant whiéﬁ’?ig {almost) independent of temperature but has different value for
different polymers. In this equation -y is a constant that lies between 0.5 and 1.0, and it is
found that the computed rate curves are relatively insensitive to the value of -y chosen. It is
postulated that &,, is inversely proportional to the entanglement density 4, or

s

(107)

i
s

-

where b is a constant of proportionality and d, is given by

-t an( )"

¢P Hn (108)

(4

= o) _ (e
bppy

K,
Equations 106—-108 can be combined to give
b 172 )
dey = (—) (109)
ak,

To be able to solve average molecular weights, the mode of termination must be
known. If it is assumed that termination occurs largely by the disproportionation mecha-
nism,
j Parameter
diM, ]
aM.I_ {2k,[P] + 2k, [P,1}{P,], n=n, (110a) 3 D —
dt j E &, (f/k )12 755
d[M,,] ] - k/KZ (molsec L-1) g
—[dt = 2k IP] + 2k, [PDP),  n > (110b) b i (sec ) 3.5 x
3 3 L8 8.97
From Eqs. 110, it is possible to derive the zeroth (Ay), first (\;), and second (i) i % 111
moments of the inactive polymer chains as follows. For example, A, is given by Ly 0.159
s _ G - ]
o 21 n2[PH2K,(P] + 2k, [P} + 2 #2[P,J{2k.[P] + 2k, [P]}  (111) - 1.0 r
n= n=n_t1
The moments of inactive polymers are thus related to the moments of the radicals, which 3§
can now be determined by Eqs. 84—86. Assuming the steady-state approximation, it is § 0.8
possible to derive from these relations the following: ' .
. Ully) + b, IMI2Zp!nlP,] + S5 [P — n2[P,]} iR .
[ " o . e
2 nz[Pn] = ZkJ[P] + Zkrc[Pe] (112&) : E )
and "' 3 x
l w + 3% P14+ m i T
S p2p, | = kIMI2Z5., n(P,,] + 25, [P} + n2[P,} (1126)3 j <
n=n_+1 ka[P] + Zkte[Pe] i E
k =
Substituting these in Eq. 107, one obtains 1 - 02
dh, S -f
= GIMHIP] -+ [P.]} + 2k,M] 2, #[P,] (113) . ;
] 0 20
Similarly, it can be found that - 4
= 3 “ Figure 15 E. i
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-:: and

a
dt

Driscoll and coworkers [82] have treated K, and d, in Eqs. 106 and 108 as parameters and
have solved these equations simultaneously. From the moments calculated by Eqgs. 113-
115, the number and weight average molecular weights can be found. Using Egs. 107 and
108, k,, and vy are computed. On substituting these in Eq. 103, the next incremental
conversion is obtained by integration. For the set of parameters for methyl methacrylate
polymerization given in Table 8, these equations have been integrated and compared with
experimental values of conversionsand molecular weights in Figures 15 and 16. The
theory is found to describe the experithental data very well.

= k,IM{[P] + [P.]} (115)

i

Table 8 Parameters for the Radical Polymerization of
Methyl Methacrylate

Temperature (°C)

Parameier 70 920
k, (fle/k, )2 7.5 X 104 38 x 103
k/kZ (mol-sec L.—1) 28 16
k; (sec1) 3.5 X 10-5 5.0 x 104
K. 2.97 5.69
o, 1.11 x 101 1.67 x 101
1/f 0.1596 0.1731

1-0r
08
C
9
1]
5 0.6
o=
C
[=]
(3]
go.t. L
5 PMMA - (],
w & 0.5%
0.2 A 0.3%
I |
0 20 40 60 80

Time, min
Figure 15 Experimental and predicted values of conversion versus time of polymerization for
methyl methacrylate [L,],, for (@) 0.5% and () 0.3%. (Reprinted from Ref. 82, with permission of
John Wiley and Sons, New York.)
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Clgdg = 0-5 %
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(%]
(]
3
=

0 0.2 0-4 0-6 0-8 10
Fractional conversion
Figure 16 . Experimental and predicted values of molecular weight versus fractional conversion for

methyl methacrylate with initiator concentration 0.5%. (Reprinted from Ref. 82, with permission of
John Wiley and Sons, New York.)

Temperature Effects in Radical Polymerization

In the initial stages (i.e., before the gel-effect sets in) the temperature dependence of
various rate constants can be expressed through the Arrhenius law:
kI = kIOE—El."RT
kp = kpoe—Ep/RT
k‘ =k me—EthT
In this representation, Ey, E,, and E, are activation energies of the initiation, propagation,
and termination steps respectively and are tabulated extensively in polymer handbooks
[76]. The temperature dependence of 7, and ., can be derived as
Kok ( E, —EJ2 + E,IZ)
= — L2
= o (L1 M}
k M E,— Ej2 —EJ2
B, = p) [ ] exp(_ P { i3 )
2kI2f2K12 [1,]12 RT

The activation energies dre such that the overall polymerization for thermally dissociating §
initiator is exothermic, i.e., (E, — EJ/2 + E,/2) is positive and rate increases with J8

temperature. As opposed to this, {E, —EJ2 — E/ 2} is normally negative for such cases
and ., decreases with increasing temperature.

Kinetic Modeling of 0l e ety

an e (u&'-f/.f';f\ ainal £, o e o
kp = kpU eXp{—E(L _ _1_')}
VF VFCI
5
k, =k (—Hﬁ) exp{ —-A (i - —1—)}
W VF VFc2

Ve = {0.025 + ap(T — 7,0} % +{0.025 +
r

+{0.025 + ay(T - T Ys
ST,

II.:S tl;gffe elzquati?ns, subscripts P, M, and § denote
an dp lvely. 'T 15 the polymerization temperature, 7, {5Kha)
d o, 1 the thermal expansion coefficient for the lg
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= o)
VFc2
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controlied. V is the specific volume of the reaction ma P R0
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After the gel point sets in, the temperature dependence of k, and k, can be represent-

1 1
el )
P T 0PIy, T Ve

W, 1.75 { (1 1 )}
k,=k ( WC) exp) —A{— —
‘ © L P Ve Vim

W

k. where A and B are constants, whereas Vi is free volume fraction defined as
i .

. V l__“
Ve = {0.025 + ap(T — T,p)} VP + {0.025 + au(T — T} %
T T

V.
+{0.025 + ag(T — To)} 2
Vi
In these equations, subscripts P, M, and S denote polymer, monomer, and solvent,
respectively. 7" is the polymerization temperature, T, is the glass transition temperature,
and o, is the thermal expansion coefficient for the glassy state. Vi, is determined by the
point where the gel point starts and is given by
A
£ = g ()
VFcZ

Vi is determined by the point where the propagation rate constant becomes diffusion
controlled. V7 is the specific volume of the reaction mass.

REVERSIBLE RADICAL POLYMERIZATION

All polymerization reactions are reversible and have an equilibrium for a given tempera-
ture at which point the Gibbs free energy is zero. In the preceding section, various
reaction steps were assumed to be irreversible in radical polymerization, which would
serve as good approximation only for low temperatures. Let us first consider the thermo-
dynamic equilibtium for addition polymerization before presenting the kinetic model
made for reversible addition polymerization.

It is assumed that the formation of the polymer can be represented by

mM=M, (116)

which states that » monomer molecules combine to form a polymer molecule of chain
length #. The change in the Gibbs free energy AG for this process is defined by

i
AG = ; Gpolymer ~ Gonomer

1 1
= (; Hpo]ymer - Hmonomer) - T(; Spolyrner - Smonomer)

A AH, — TAS, (117)

where H and S represent enthalpy and entropy and AH, and AS, are the changes in
enthalpy and entropy of polymerization per monomer unit, respectively.

Almost all addition polymerizations are exothermic. Moreover, polymerization is the
process of joining monomer molecules by covalent bonds, something equivalent to the
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stringing of beads into a necklace, the final state being more ordered and consequently
having a lower entropy. Thus AS,, is always negative and is normally a large negative
number, which cannot be neglected. Equation 117 therefore suggests that there is a ceiling
temperature T, at which the addition polymerization is at equilibrium (or AG = 0), i.e.,

AH '
T =—E 118
P a5 )
For a given monomer concentration [M], AS in this equation is equal to
AS, = AS) + R In [M]} (119)

where ASY is the entropy change when the polymerization is carried out at standard state
and is independent of {M]. The standard state of a liquid monomer is defined to be that at
which monomer concentration is one molar at the temperafure and pressure of the poly-
merization. If [M], is the monomer concentration at equilibrizm, then

AHS  ASY

= =p _ 2Yp 120
In [M], RT m (120)

where AH, is the same as AH) by definition. As an example, for styrene being poly-

merized at 60°C, AHY is 16,700 cal mol—! and AS° 25 cal mol-K—1. [M], for styrene at
60°C is given by

16,700 25
1.987(273 + 60) 1.987

M], = exp{— } =37 X 10—6 mol L—! (121)
It is thus seen that at 60°C, polymerization would go to complete conversion. Polystyrene
has a ceiling temperature of 670 K and as the polymerization temperature approaches this
value, various reaction steps would become reversible and the analysis of the preceding
section must be modified as follows.

In the irreversible mechanism of radical polymerization given in Table 7, the propaga-
tion step has considerably lower activation energies. Consequently, this step would be-
come reversible first and the polymerization then can be represented as follows.

Initiation:
ky
L — 21 (122a)
k
M-+I=P (122b)
ki
Propagation:
k
P, + M =P,y (123)
ky
Termination:
k
P+P,—M,+M, a=l (1242)
kl{.‘
P, + P, — M, n=1 (124b)

ks,
P, + S——S>Pl + M,

klr. M

Pn+M—>P1+M,,

Reactions in Eq. 124¢ an
molecule or any transfer age
approximation is assumed &

dPy]
3;—1Wm—hu
+mm§[

d[Py]
o = kMIP -

- {kt[P] + k;;-'l\

d[P,]
_dr = kp[M]{[Pn'*].] -
~ {&IP) + k,
where
k= k. + km'_
and '
[P = 2. [p]

On adding all relations from I

dZilP,] _

~ 0 = k,MJ[
- {k[[P] 4

or
[p,] = kv
r=72 kt[P] + ktr.M[I\'

RIPT + ey
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krr',
P,+S—3P, +M, n=2
P, + M 3P, + M, n=2

(124c)

(124d)

Reactions in Eq. 124c and d are transfer reactions, which can occur to a2 monomer
molecule or any transfer agent that may be present in the reaction mass. If the steady-state

approximation is assumed to hold, the mole balance for P,, is given by

d[;l] = KIMIT] = & [Py] — &, MI[P,] + K[P] + ko IM] 2 [P,]
o+ KipsIS] 2 [Pu] = (i + kTP IPT = 0
% = &,[MKIP,] — [P,]} -+ Ki{IP5] — [P}
— {k[P] + kypa[M] + ki [STHP,] = 0
d—[f;—'] =k IMHIP, (1 — [P0} + K){[P,1] — [P,]}
- {kxl__P] + ktr,MM] =+ krr,S[S]}[Pn] = 0
where
ke = ke + ky
and '

[P] = ;1 [P,]

On adding all relations from P, on, one gets

Liizallal _ o = tvitpy - 1P
= P+ ki MIM) + K s[ST 2, P,
or
< &, IM]
= P
2 R = e e
& [P,]

K [P] + ky M F &, s[S]

(125)

(126a)

{(126b)

(127

(128)
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Substituting this in the balance for P;, one has

d 129)
A _ k [MI] — k{[P\] + k, s[SIP] + &, mIMI[P] + & [P,] (
dt .
Balance for [I} combined with the steady-state hypothesis yields
= (130)
M _ o — 2l + kP, - kM = 0
dt
On adding all balance relations, one obtains [P] as
(131)
A _ 0 = 1 MIM — Ky [P,] — KPP
dt
If we substitute -
a = ku[M] o
P 132¢)
v = kZ[M] + k, + Kk, mIM] + &, 5[S] + &,[P] EISM)
0 =, y[M] + &, 5[S] + k[P]

i iven i i ix, Then in
Eq. 125 reduces to the set of algebraic equations given in Eq. Al in the appendix
terms of P, P, can be determined as

[P,] = [Py](ax)*—! (133)

But
3 [Py]

1= 2 [P,] = [PHL + e + (ax) + <+ 7} = o
) (134) 4

[Pi] = (A — ax.)[P] :
Equation 133 therefore reduces to o |

{P,]=[PI1 — ax )ox,) !
The mole balance of inactive polymer M, is given by ‘

= 3
A = Gl M1 + b s18) + b PHR1 4 5 3 P, 30 1

One defines the following kth momjent of M,, distributions as

o

(137) 4
he = 2 nf[M,] :

1

i i ived ag
and the moment generation relations for Ay, A, and A, can be easily deriv

dhy
dt

R 138a) §
= {ky.s[81 + kirmuIM] + Kg[PTHI — o )[P] 1= an, | el ( :

dX
o = anslS) ¥kl
dh
_dt_z - {k”"S[S] + krr,M[

T k[P (T
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1P + k[P, ] (129) ;
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(130 §
131)

(132a)
(132b)
(132¢)
(132d)
i9. Al in the appendix. Then in

(133)
AN
1 - ax,)
(134)
(135)
(PIP,-,] (136)
1S

(137)

be easily derived as

X 1
Tax, T okePP (1382)
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& (X N2 — 0x) K [Py 12
= {k, s[S] + k,r,M[M] + ky[PTHP, ] (1 — ax,)? * (1 — ax,)? (1380)
" d{ox,) — Hoxn)? + (o)
de = {kns[S1 + ko pa[MT + K, [PTHP,] a4 — ax,)?
2 + ax,
+ k;c[Pllz {1 — ox)* (135)

'- Equations 138 reveal that the moments of the polymer formed by reversible radical

polymerization are a function of a term (ax,,) in which x,, involves the reverse rate
constant. Irreversible polymerization has been completely analyzed in the literature. On
comparison with Eqs. 138, it is found that irreversible polymerization has a form identical
to that seen in these equations if (oax..) is replaced by probability of propagation, a*,

; defined as

_ k,IM]
kpM + krr,S[S] + krr,MM + kt[P]

It can be shown that as &, — 0, (aux..) reduces to o* and in this regard Eqs. 138 give the
most general form of the result.

o¥

(139)

CONCLUSIONS

Polymerization can in general be classified as step growth and chain growth type. In this
chapter it is observed that polymer formation, like any other reaction in nature, is revers-
ible. In any reasonable modeling, this must be taken into account.

Step growth polymerization of bifunctional monomers leads to the formation of linear
chains, whereas for that of monomers having functionality more than 2, the resultant
polymer is either branched or network, The reversible step growth polymerization of
bifunctional monomers has been modeled and it is shown that under a certain transforma-
tion, the MWD equations can be decoupled and are considerably easier to solve numer-
ically. The reversible polymerization of multifunctional monomers can be modeled only
after the reaction of branched molecules is written. In order to do that, one needs to know
the number of sites on a P, molecule wheih would give P, {(n < r) on cleavage. This has
been denoted by 8, ., and it is shown that the MWD equations for reversible multifunc-
tional polymerization involves this factor. §,_,, is dependent on the chain structure, and
there is a computer program that gives the value for specified chain length and structure.
Numerical solution of the MWD shows that the polydispersity index of the polymer
formed is higher than that of the polymer formed through irreversible mechanism.

Chain growth polymerization can occur through an ionic as well as a radical mecha-
nism, and the discussion is focused on the latter in view of its industrial importance. It is
shown that radical polymerization involves three steps: initiation, propagation, and termi-
nation. If the polymerization is carried out at low temperatures, the polymerization is
essentially irreversible and can be roughly divided into initial and advanced stages which
are separated by a gel point. Beyond the gel point the termination rate constants become
diffusion controlled and there is a considerable drop in magnitude, which gives a very
high rate of polymerization with a corresponding increase in the average chain length of
the polymer. The overall polymerization at low temperatures is not limited by the equi-
librium but by the occurrence of a glass state of the reaction mass. To control molecular
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weight in radical polymerizatiof, one is forced to use high temperatures to suppress the
formation of the undesirable glassy state, but some of the reaction steps then become
reversible. A kinetic scheme for radical polymerization has been discussed and analyzed
for the average chain length and the polydispersity index of polymerization.

APPENDIX: ANALYTICAL SOLUTION OF ALGEBRAIC EQUATIONS
INVOLVED IN ADDITION POLYMERIZATION

Let us consider the following infinite set of algebraic equations which must be solved for
p, for all n:

Pa_ P20y op, — pa) + Blps — p2)

0 0

%z%,&’+ alp, — p3) + Bps — p3)

So= B0 @y = B+ Qa2 (a1
where p; (fori = 1,2,3, . . .), a, 8, and P are constants.

In order to solve for p,, for all », it is assumed that py, ., is known precisely, where N,
is any integer greater than 2, Equation Al yields py, as

1

P, = xnPy—1 oy Py, t 0 Zy NP : (A2)
where
1
o (A39)
1 :
Iy = ; (A3b) i
1 3
) Ly = ; (A3c) 4
1 :
v={atprsg (A3d) ]

The expression for py, _; involves py, , which can be eliminated using Eq. A2. This way
Pw,—1 can be written in terms of py, _, and py,, 1, . Proceeding in this way, it is possiblc to

derive for any r (< N;)

N 3
1 L
Pn = QX + BynpN;-l-l + 6 Z Zinpio (A4)
where
1 !
X, = (ASa) §

Y~ o

ynz_@L=

Y- 0"-an+1

xn
- 1Y
Zin = E Yoy tn—i

In
Proceeding this way, itis
We next examine the pr
Eq. A5a can be written in ¢

n =

A.SN1—>°°, x,forn < N, a
gives :

1
X =
1
v —
'Yl Koo
where

=Y

Y1 o

Equation A7 can be solved f
_ ¥~ VY2 - daB
2ap

where the lower root serves a
To study the properties of

first recognized that no matte
unity:

P, = B%ﬁ{l —_\/;
-Gz,
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tecalled from Eq. A5 that Yn =
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Yn—i = YiBxaY, =1
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Koo
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gh temperatures to suppress the
the reaction steps then becomme
1as been discussed and analyzed
of polymerization.

LSEBRAIC EQUATIONS
)

ations which must be solved for

(A1)
. is known precisely, where M

(A2)

(A3a)
(A3b)
(A3c)

(A3d)

1at_ed using Eq. A2. This way
g in this way, it is possible to

(Ad)

(A5a)

Kinetic Modeling of Polymerization Reactions [ 425

B L 0
I = _‘yn;l = 1_[ (Bx,), 2=n=N {A5b)

Y~ ann+1 i=n

X, fori=n
7, = {% Ynpenes  formt1<is=N —1 (ASc)
Y, fori =N,

Proceeding this way, it is possible to determine p; in terms of leH.
We next examine the properiies of the solution as N, approaches . The value of x,, in
Eq. A5a can be written in the form of an infinite successive fraction as

1
limzx, A x, = e
o '
Ny = @eeeremmmeeey = 5
1 | Ny Y- T
B A (AG)
N—

As Ny — o, x, for n <€ N, approaches an asymptotic value independent of n, and Eq. A6
gives

1
Xy =
— (A7)
v Y1 T Xeo
where
=
"= g »8)
Equation A7 can be solved for x,, as
— 2 — 4 .
Y ¥ op (A9)

Yo 20p

~ where the lower root serves as a physically relevant quantity.

To study the properties of the infinite continued fraction formed by y, in Eq. AS, itis
first recognized that no matter what the values of o, B, and 0, Bx.. is always less than
unity:

L R R IS

i.e., since a/y and B/7y both are less than unity, (Bx..) is always less than unity. If it is
recalled from Eq. A5 that v, = v, ;(Bx.) and if we denote by y} the value & 1 at which

X, = X is & good approximation, then y,_;, ¥,—», etc., can be wriiten as
Yn—i :'y;f(ﬁxu:»)i' i=12,...,n— 1 (All)

Since (Bx.) < 1, y, can be made sufficiently close to zero by choosing N, sufficiently
large. Furthermore, as N; — o and # <€ N,, the following are also true:
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Z, = x, (Al22) 1 R Goel, 5. K. Gupta, an
Zyy— 0 (A12b) 3 32, S. K. Gupta, A. Kumar, ;
: 33, S.K. Gupta, A. Kumar, ¢

34, A, Kumar, §. K. Gupta, a
35, S.K. Gupta, A. Kumar, a
36. A.S. Gupta, A, Kumar, a
As N, — =, p, in Eq. Al is given by 3 4 gg ?I;NHLZIIZ < onanloy

: ' - - H. Hodkin, J. Polym, §,
3. P, Flory, J. Am. Chem,

or more generally

Zin — xm(me)i"n: for n= i (A].3)

x - 1

= - Xoo) P50 T (0Xe) P Ald) 4 3
Pu=7 ;‘ (Bxo)"py + (aXxe)py s (Al4) : e 90 P.J. Plory, Chem. Rev., 3
o ) o . . . , E ;4L WoH Stockmayer, J. Che
and this gives p, for all n in Eq. Al as follows, Using this, p, is written in terms of p,, * 42, w.on Stockmayer, J. Che
which is substituted in the relation of p;, and p,, is determined by successively evaluating 4 ¥ 43, W.H. Stockmayer! 7. pobl
Pa, 3, etc. ; 44, W. H. StOCkmaycr, A PO!)‘
1 5. M. Gordon, Proc. R, Soc.
REFERENCES S S tuer, G N. Malcol
; . */. M. Gordonand T, G. Parke
L. P.J. Flory, Principles of Polymer Chemistry, Comell University Press, Ithaca, N.Y. (1953). 3§ 48, M. Gordon, T. C. Ward a
2. R.W. Lenz, Organic Chemistry of Synthetic High Polymers, Wiley, New York (1967). _ 4 Newman, eds.), Plenum ,N‘
’ 49, M. Gordon and G. R, Scant

3.  A.Kumarand S. K. Gupta, Fundamentals of Polymer Science and Engineering, Tata McGraw- 3 7
1 ¢ 0. M. Gordon and M. Judd, wv

Hili, New Delhi (1978). 3 j

4, P.E.M. Allen and C. R. Patrick, Kinetics and Mechanism of Polymerization Reactions, Ellis E 51 K. Dusek, M. Gordon, and |
Horwood, Chichester (1974). 3 __ 32, T.E. Harmis, Theory of Bra,

] - 53, C. W. Macosko andD_R. M

5. ). Funukawa and O. Vogl, lonic Polymerization, Unsolved Problems, Marcel Dekker, New 1 ;
' ¢ 3. D.R. Miller and C, W. Mac

York (1976). - |
T. Keti, Kinetics of Ziegler—Natta Polymerization, Kodansha, Tokyo (1972). ] P 2> D.R. Miller and O W. Mac
5. 56. D, R, Miller, E. M. Valles, :

6.

7. 1. Boor, Ziegler—Natta Catalysts and Polymerizations, Academic Press, New York (1979).

8. ). C. W, Chien, Coordination Polymerization, Academic Press, New York (1975). E 7. D. R, Miller and C. W. Mac
9. G. Odian, Principles of Polymerization, 2nd ed., Wiley, New York (1981). g 58. R.F. T, Stepto, in Deve] opn
: Science Publishers, Barking,

10.  A. Kumar, J. Appl. Polym. Sci., 34: 571 (1987). 3 3

11.  S. K. Gupta, A. Kumar, and K. K. Agarwal, J. Appl. Polym, Sci., 27: 3089 (1982), 3 39, I L. Stanford andR.F, T. §

12, K. Tai, Y. Arai, H. Teranishi, and T. Tagawa, J. Appl. Polym. Sci., 25: 1789 (1980). 3 £ 60. R F T, Stepto, Polymer, 20

13. 8. K. Gupta and A. Komar, Chem. Eng. Comm., 20: 1 {1983). 8- ‘_'61. A. B, Fasina and R, F, T‘. Ste:
4 b 62. K. Dusek and W, Prins, Adv.

14. H. Kilkson, Ind. Eng. Chem. Fundam., 7: 354 (1968). 7
15. J. A. Biesenberger, AIChEJ, 11: 369 (1965). : 3 63. W.B, Temple, Makromel, Cl
A. Kumar, P. Rajora, N. L. Agarwalla, and S. K. Gupta, Polymer, 23: 222 (1982). 4 E 64, H. Jacobson and W. H, Stock

16.

17. H. M. Hulbert and S, Katz, Chem. Eng. Sci., 19: 555 (1964). 6. N o paon and W. B. Tompe

18. A. Kumar, Macromolecules, 20 220 (1987). | ] 7 1T v s, Vo, Aot
67 L1 Romanstova, Yu. A. Tara,

19. A, Kumar, S. N. Sharma, and S. K. Gupta, J. Appl. Polym. Sci., 29: 1045 (1984).
20. A. Kumar, S. N, Sharma, and 8. K. Gupta, Polym. Eng. Sci., 24: 1205 (1984).

21, A, Kumar, S. K. Gupta, and D. Kunzru, J. Appl. Polym. Sci., 27: 4421 (1982).

22. D.H. Solomon, ed., Step Growih Polymerization, Marcel Dekker, New York (1972).
23. M. Amon and C. D. Denson, Ind. Eng. Chem. Fundam., 19: 415 (1980).

24, 8. K. Gupta, N. L. Agarwalla, and A. Kumar, J. Appl. Polym. Sci., 27: 1217 (1982).
K. Gupta, A. Kumar, and X. K. Agarwal, Polymer, 23: 1367 (1982).

E Plate, Vysokomol. Soedin. A, |
68. S5.K. Gupta, S. Nath, and A, ]
6%. M. Abramowitz and J, A. Step
_ (19653),

1 0. A, Kumar and S, K. Gupta, J,

7. M. Mutier, U. W, Suter, and P.

25. 8.

26. L. C. Case, J. Polym. Sci., 29: 455 (1958). 12, A Kumar and P. K. Khandelw;

27. V. 8. Nandaand S. C. Jain, J, Chem. Phys., 49: 1318 (1968). E 73, A. Komar and P. K. Khandelw:

28. G. B. Taylor, J. Am. Chem. Soc., 69: 638 (1947). ) _ 4. A. Kumar and P. XK. Khande]'.

29.  §. 1. Kuchanov, M. L. Keshtov, P. G. Halatur, V. A. Vasnev, §. V. Vinogradova, and V. V. 1 POlyrnerization, M. Tech. Thes;
Korshak, Macromol. Chem., 184: 105 (1983). 3 E 75, R.W. Lenz, Organic Cfeemisn—y

30. S. K. Gupta, N. L. Agarwalla, P. Rajora, and A. Kumar, J. Polym. Sci. Polym. Phys. Ed., § g 76. 1. Brandrup and E. H. Immer:
20: 933 (1982). ; ' E

York (1975).




(A123)
(Al12b) _';

(A13)

this, p, is written in terms of p,, 3
mined by successively evaluating 3

niversity Press, Ithaca, N.Y. (1953). @

ners, Wiley, New York (1967).
ence and Engineering, Tata McGraw- 4

wn of Polymerization Reactions, Ellis

ved Problems, Matcel Dekker, New 3

ansha, Tokyo (1972).

Academic Press, New York (1979).
¢ Press, New York (1975).

, New York (1981).

k.

‘olym. Sci., 27 3089 (1982).
Polym. Sci., 25: 1789 (1980).
(1983).

a, Polymer, 23: 222 (1982).
[964).

Iym. Sci., 29: 1045 (1984),

v, Sei., 24: 1205 (1984).

t. Sci., 27: 4421 (1982).

el Dekker, New York (1972).

., 19: 415 (1980). 4

Polym. Sci., 27: 1217 (1982).
23: 1367 (1982).

1968).

asnev, §. V. Vinogradova, and V. V., A

wr, J. Polym. Sci. Polym. Phys. Ed.,

T Shcti

70,
7.
[ 72.
73,
4.

5.
76.

Kinetic Modeling of Folymerization Reactions | 427

R. Goel, S. K. Gupta, and A. Kumar, Polymer, 18: 851 (1977).

S. K. Gupta, A. Kumar, and A. Bhargava, Eur. Polym. J., 15: 557 (1979).
S. K. Gupta, A. Kumar, and A. Bhargava, Polymer, 20: 305 (1979).

A, Kumar, S. K. Gupta, and R. Saraf, Polymer, 21: 1323 (1980).

5. K. Gupta, A. Kumar, and R. Saraf, J. Appl. Polym. Sci., 25: 1049 (1980).
A. 8. Gupta, A. Kumar, and S. K. Gupta, Br. Polvmn. J., 13: 76 (1981).

R. W. Lenz, C. E. Hanlovitz, and H. A. Smith, J. Polym, Sci., 58: 351 (1962),
I. H. Hodkin, J. Polym. Sci. Polym. Chem. Ed., 14: 409 {1976).

P. . Flory, J. Am. Chem. Soc., 63: 3083 (1941).

P. ]. Flory, Chem. Rev., 39: 137 (1949).

W. H. Stockmayer, J. Chem. Phys., 11: 45 (1943).

W. H. Stockmayer, J. Chem. Phys., 12: 125 (1944).

W. H. Stockmayer, J. Polym. Sci., 9: 69 (1952).

W. H. Stockmayer, J. Polym. Sci., 11: 424 (1953).

M. Gorden, Proc. R. Soc. London A, 268: 240 {1962).

D. 5. Hutler, G, N. Malcolm, and M. Gordon, Proc. R. Soc. London A, 295: 29 (1966).

M. Gordon and T. G. Parker, Proc. R. Soc. Edinburgh, A69: 181 (1970).

M. Gordon, T. C. Ward, and R. S. Whitney, in Polymer Networks (A. J. Chompt and S.
Newman, eds.), Plenum, New York, pp. 1-21 (1971).

M. Gordon and G. R. Scantlebury, J. Chem. Soc. London B, 1 (1967).

M. Gorden and M. Judd, Nature, 234: 96 (1971).

K. Dusek, M. Gordon, and S. B. Ross-Murphy, Macromolecules, 11: 236 (1978).

T. E. Harris, Theory of Branching Processes, Springer-Verlag, Berlin, Chap. 1 (1963).

C. W . Macosko and D. R. Miller, Macromolecules, 9: 199 (1976).

D. R. Miller and C. W. Macosko, Macromolecules, 2: 206 (1976).

D, R. Miller and C. W, Macosko, Macromolecules, 11: 656 (1978).

D. R. Miller, E, M. Valles, and C. W. Macosko, Polym. Eng. Sci., 19: 272 (1979).

D. R. Miller and C. W. Macosko, Macromolecules, 13: 1063 (1980).

R. F. T. Stepto, in Developments in Polymerization, Vol. 3 (R. N. Haward, ed.), Applied
Science Publishers, Barking, U.X., p. 81 (1982). '

I. L. Stanford and R. F. T. Stepto, Br. Polym. J_, 9: 124 (1977).

R. F. T. Stepto, Polymer, 20: 1324 (1979).

A. B. Fasina and R. F. T. Stepto, Makromol, Chem., 182: 2479 (1981).

K. Dusek and W. Prins, Adv. Polym. Sci., 6: 1 (1969).

W. B. Temple, Makromol, Chem., 160: 277 (1972).

H. Jacobson and W. H. Stockmayer, J. Chem. Phys., 18: 1600 (1950).

M. Gordon and W. B. Temple, Makromol. Chem., 263 (1972),

N. A, Plate and O. V. Noah, Adv. Polym. Sci., 31: 133 (1979).

I. I. Romanstova, Yu. A. Taran, Q. V. Noa, A. M. Yelyashevich, Yu. Ya. Gotlib, and N. A.
Plate, Vysokomol, Soedin. A, 19: 2800 (1977).

S. K. Gupta, S. Nath, and A. Kumar, J. Appl. Polym. Sci., 30: 557 (1985).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York
(1965).

A. Kumar and S. K. Gupta, J. Macromol. Sci., Rev. Chem. Phys., C26: 183 (1986).

M. Mutter, U. W, Suter, and P. J. Flory, J. Am. Chem. Soc., 98: 5745 (1976).

A, Komar and P. K. Khandelwal, J. Appl. Polym. Sci., 33: 1835 (1987).

A. Kumar and P. K. Khandelwal, Polym. Commun., 28: 48 (1987).

A. Kumar and P. K. Khandelwal, Modelling of Reversible Multifunctional Step Growth
Polymerization, M. Tech. Thesis, 11 T Kanpur, India, 1986.

R. W. Lenz, Organic Chemistry of Synthetic High Polymers, Interscience, New York (1967).
J. Brandrup and E. H. Immergent, Polymer Handbook, 2nd ed., Wiley-Interscience, New
York (1975).



428 [ Kumar and Khandelhwal

71.
78.
79.

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92,
93.

94.
95.

G. Odian, Principles of Polymerization, 2nd ed., McGraw-Hill, New York (1982).

O. Levenspiel, Chemical Reaction Engineering, 2nd ed., Wiley, New York (1972).
W. H. Ray, On the Mathematical Modelling of Polymenzanon Reactors, J. Macromol. Sci.
Rev. Macromol. Chem., C8: 1 (1973).

S. L. Liu and N. R. Amundson, Rubber Chem. Tech., 34: 995 (1961).

P. G. Gladyshev and S. R. Ratikov, Russ. Chem. Rev., 35: 405 (1966).

J. Cardenas and K. F. Q'Driscoll, J. Polym. Sci. Polym. Chem. Ed., 14: 883 (1976).
F. L. Marten and A. E, Hamielec, ACS Symp. Ser., 104 (1979).

5. K. Soh and D. C. Sundberg, J. Polym. Sci. Polym. Chem. Ed., 20: 1299 (1982).
S. K. Soh and D. C. Sundberg, J. Polym. Sci. Polym. Chem. Ed., 20: 1315 (1982).
§. K. Soh and D. C. Sundberg, J. Polym. Sci. Polym. Chem. Ed., 20: 1331 (1982).
S. K. Soh and D. C. Sundberg, J. Polym. Sci. Polym. Chem. Ed., 20: 1345 (1982).
W. Y. Chiu, G. M. Carratt, and D. S. Soong, 16: 348 (1983).

T. J. Tulig and M. Timrell, Macromelecules, 14: 1501 (1981).

D. T. Tumner, Macromolecules, 10: 221 (1977).

J. Cardenas and K. F. O'Driscoll, J. Polym. Sci. Polym. Chem. Ed., 15: 1883 (1977).
J. Cardenas and K. F. O’Driscoll, J. Polym. Sci. Polym. Chem. Ed., 15: 2097 (1977).

K. F. O'Driscoll, J. M. Dionisio, and H. K. Mahabadi; in Polymerization Reactors and 3
Processes (J. N. Henderson and T. C. Bouten, eds.), American Chemical Society, Wash-

ington (1979).
F. L. Marten and A. E. Hamielec, J. Appl. Polym. Sci., 27: 489 (1982).
T. J. Tulig and M. Titrell, Macromolecules, 15: 459 (1981).

Optimizat

i INTRODUCTION
SOME ASPECTS OF OPTIMIZ
Polymerization Kinetics and ]
Reactor Dynamics and Stabil;
Mathematical Tools of Optim
FORMULATION OF THE OBJ]
The Multiobjective Nature of
: Multiobjective Decision Anal
g OVERVIEW OF PREVIOUS C(
£ BATCH CHAIN POLYMERIZA
The Minimum Time Problem
: Modification of Molecular We

é STEP REACTIONS
k| COPOLYMERIZATION REACT

¥ OFTIMIZATION OF TRANSIED
e | CONCLUSION

F. NOTATION

8 REFERENCES

INTRODUCTION

The relevance of optimization
. are easily justified by the econ
The manufacture of polymeric
. volume of chemical production

; support of optimization are fi
| polymeric material cannot be co

tion by itself does not determi

L related to the applicability, qus
f  Properties, like processability s
.. molecular we1ght distribution (b

*Current affiliation: Tremco Ltd., Toro




HoJo pur s 19y
g 2 AU} 1nq owinjoa
JM7J0 [[B ‘SIdyoreasar
[} $ATPOGU YoM 2p)
UBTLI0D] ‘SJUaWate)s
0 SH0¥0 21 SJUSs
“OLNOA IS8Ty SIY
+ *sanradoid oupwioprad
' PUE PIoULIgpeI-sSoIn A]
[BHUASSA 012 pAALIaD vJED
{ puryaq sajdround ot jo
JBIEYD JOJ SanbINo3) jeor
OLIBA 9531) JO uononpoid
STy ut papnpouy -payysyy
§& 4ons $a88e[d Jowjod
PUAS ayJ, -sopoury uon
Yo aafem? opup poziuwSio
AW pue ‘uoneiado pue
B “Anstwoys xowfjod
Sisaypudg ‘1 awmjop
‘JuInfoA
3§ SILI3S SUINjOATIIW v
onpoxd pue ‘Gurssacord
fJurmisrmuew [eonoerd
9q ueneayun apiaoxd
13ofouysa) ot se [[om
Tayordwios v Juipracad
od fo yoogpuogy oyy

VOIIAWY J0 STLVLS A9LINAQ FHL NI GHINTEd

1 7 € ¥ § 9 L 8 6 0l
:(uS1ip 188]) gunund jusrmn)

91001 HOA MIN “HIOA MON 'INUIAY UOSIPEIN OLT
“INI HHNNAA TIDAVIN

-1aystjgnd 2

noYNM ‘WAISAS [EASLIIDI pUT 231015 uonewiojui Aue £q 10

guikdooojoyd Furpnpout *[EOIURYISU 10 JIUOLIID *supaul
l dos oq Aew ped Aue Jou %00qG SIY) 1PN

wol} Supiim u uorssiwed 1
“GuIpI0d23 pue *SULLILOIdN
£ur Aq 30 1WO) AUR Ul PIRIWISUER) JO PAoNpol

paAsasay SIYSRA 1V “ONI “AANNAd TAOUVIA A4 6861 @ WBLLdoD

T-EL18-L¥T8-0 NASI

L8G1
AeH
g8¢

7p
o




Volumel o
___ Synthesisand Properties

. L@ut@i bg/ Nﬂ@h@ﬂ@g P @F‘lcgmﬂsn “ﬁf




