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ABSTRACT: A new method for calculating average molecular weights is presented for nonlinear polymers. In con- 
trast to  the previous methods of Flory and Stockmayer which first calculate the distribution of all species and then 
use the distributions to calculate average properties, the new method calculates these properties directly. In con- 
trast to the method of Gordon, probability generating functions are not required. Starting with elementary proba- 
bility and utilizing the recursive nature of network polymers, property relations can be developed more simply. We 
illustrate the method for calculations of R,, R,, and the gel point for a wide variety of polyfunctional polymeriza- 
tions. 

Flory2 and Stockmayer3 laid out the basic relations be- 
tween extent of reaction and resulting structure in nonlin- 
ear polymerizations. Starting with the assumptions of 
equal reactivity of functional groups and no intramolecular 
reactions, they used combinatorial arguments to derive ex- 
pressions for the size distribution of the finite molecules as 
a function of reaction extent. For cases of practical impor- 
tance these distribution functions become quite complex 
(e.g., Stockmayer4). 

At present, experimentally we can only measure average 
molecular weights of nonlinear polymers. I t  is possible, 
though algebraically very tedious, to calculate these aver- 
ages from the distribution functions. General treatment of 
nonidealities such as intramolecular reactions or ring for- 
mation using distribution functions appears to be prohibi- 
tive. 

Gordon5 showed that the molecular weight averages 
could be calculated directly using the theory of stochastic 
branching processes.6 He and coworkers have used this 
theory extensively on nonlinear polymer p r o b l e m ~ . ~ - l ~  Gor- 
don's technique involves abstract mathematics and re- 
quires deriving probability generating functions. The 
method is quite general but rather difficult to use. 

Our interest in developing mathematical models for net- 
work polymer processing motivated us to seek simpler rela- 
tions which could readily be incorporated into a larger, 
complex process model. Below we describe a new, simpler 
method for deriving average properties of nonlinear poly- 
mers. 

We retain Flory's three simplifying assumptions, namely: 
(1) all functional groups of the same type are equally re- 

(2) all groups react independently of one another; 
(3) no intramolecular reactions occur in finite species. 

(Some departures from these assumptions, such as unequal 
reactivity and substitution effects and some aspects of in- 
tramolecular loops, can also be treated with our method.") 

Our method uses the recursive nature of the branching 
process .and an elementary law of conditional expectation. 
Let A be an event and A its complement. Let Y be a ran- 

active; 

dom variable, E (  Y )  its expectation (or average value), and 
E ( Y A )  its conditional expectation given the event A has 
occurred. Then the law of total probability for expecta- 
t ions is 

(1) E ( Y )  = E ( Y ] A ) P ( A )  + E ( Y A ) P ( A )  
This law is discussed in most texts on probability theory.12 

Stepwise Polymerizations 
Mw for Homopolymers. Let us first illustrate the meth- 

od with some simple examples. Consider the simplest case, 
the one treated by Flory,2 the reaction between similar f  
functional molecules. An example is the etherification of 
pentaerythritol: 

OH 
I 

HO-CH,-C-CH?-OH -+ branched polyether + H,O 
I 
I 
CH, 

1 -  
OH 

First we will only consider stepwise or condensation poly- 
merizations, ignoring the effects of any condensation prod- 
ucts for the moment. A later section treats chainwise or ad- 
dition polymerizations. We can schematically represent the 
polymerization of Af moles of monomer bearing f groups by 

1 
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Let the system react until some fraction p of the A's have 
reacted, where 

(3) 

Here and throughout this paper A (or Af) represents the 
initial moles of A type groups and At equals the moles after 
some reaction time. 

Pick an A group a t  random, labeled as A' above. What is 
the weight, WAoUt, attached to A' looking out from its par- 
ent molecule, in the direction 1, ? 

Since A' is chosen a t  random, W A J ~ ~ ~  is a random vari- 
able. W A , ~ ~ ~  equals 0 if A' has not reacted. If A' has reacted 
(with A", say) then W A , O ~ ~  equals W A , , ~ ~ ,  the weight at- 
tached to A" looking along L,, into A"'s parent molecule. 

P = (A - &)/A 

(4) 
if A' does not react 
if A' does react (with A") 

W A N  = 1 
By equation 1, 

E (  W A O ~ ~ )  = E (  WAO'YA reacts)P(A reacts) + 
E (  WAO~YA does not react)P(A does not react) = 

E (  WA'"), the expected weight on any A looking into its par- 
ent molecule, will be the molecular weight of Af plus the 
sum of the expected weights on each of the remaining f - 1 
arms which is just E (  

E (  W A ' ~ )  =  MA^ + (f - 1)E( WAO~') (6) 

and the repetitive nature of this simple branched molecule 
leads us back to the starting situation. 

The molecular weight, WA~,  of the entire molecule to 
which a randomly chosen Af belongs, will just be the weight 
attached to one of its arms looking in both directions (in 
and out )  

( 7 )  

and thus the average molecular weight attached to a ran- 
dom Af will be 

n w  = E ( WAf) = E (  Wain) f E (  WAoUt) (8) 
This is the weight average molecular weight because pick- 
ing an Af or an A group a t  random corresponds to picking a 
unit of mass and then finding the expected weight of the 
molecule of which it is a part. Flory,2b p 293, comments on 
this. 

E(WA'")p + o(1 - p )  = pE(WAin) ( 5 )  

for each arm. Thus 

WAf = WAin + WAoUt 

Solving eq 5 and 6 and substituting into eq 8 yields 

or 
. .  

(9) 

which is in agreement with Flory's result derived by the 
much longer process involving the size distributions.2 I t  
should be noted above that solutions to eq 5 and 6 exist 
only when 1 > p(f  - 1). If 1 I p ( f  - l), then the weight av- 
erage molecular weight diverges and the system forms a gel 
or infinite network. The tetrafunctional polyether network 
of eq 2 is used to illustrate eq 9 in Figure 1. 

If a condensation product is involved, as in eq 2 above, 
we need to subtract out M c ,  the molecular weight of the 
condensate. In polyetherification M c  = 18. The effect bf 
condensation products is shown in Figure 1 and described 
in more detail in the Appendix. 
1T5, for Copolymers. Most  stepwise polymerizations in- 

volve two reactive groups, for example urethane formation 
from pentaerythritol and 1,6-hexanediisocyanate. Consider 

1 
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Figure 1. Calculated average molecular weights for the polyether 
network formation by the stepwise homopolymerization of penta- 
erythritol (eq 2). The effect of condensation products on h?, and 
M ,  is shown (see Appendix, eq A7 and A20). 

Af moles of f functional A-type monomer reacting with Bz 
moles of bifunctional B type shown schematically: 

-B$++B- 

A41 
Let the system polymerize until some fraction P A  of the 

A groups and some fraction PB of the B's have reacted. If A 
+ B is the only type of reaction then these are not indepen- 
dent and 

or 
PAfAfO = PB2BZ0 (11) 

(12) 

Again let us pick an A at random, A' above, and ask what 
is the weight W A , ~ ~ ~  in direction 1, ? Here W A , ~ ~ ~  will 
equal zero if A' has not reacted. If A' has reacted (with B', 
say) it e uals Wglin, the weight attached to B' looking in di- 
rection- . 

(13) 

As in eq 5 ,  the law of total probability for expectations (eq 
1) now implies 

E (  WAoUt) = PE( WBin) (14) 

In a similar way as before we can write expected weights 
following the arrows in eq 10 until the recursive nature of 

9 
if A' does not react 
if A' does react (with B') 

W*,OUt = l o  
Wgfin 
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the structure brings us back to eq 14 

E (  WB~*) = M B ~  + E (  W B ' ~ ~ )  

E (  WBO"~) = rpE(  WA~")  

E( W A ~ ~ )  =  MA^ + (f - 1)E( W*OUt) 

(15) 

(16) 

(17) 

Let War be the total molecular weight of the molecule to 
which a randomly chosen Af belongs. Let W B ~  be the 
weight for a randomly chosen B2. Then 

E (  W A ~ )  = E (  W A ~ ~ )  + E( W A " ~ ~ )  , (18) 

(19) 

Solving eq 14 through 17 and substituting into eq 18 and 19 
gives 

E (  WBJ = E (  WB~") + E( W B O ~ ~ )  

To find the weight average molecular weight, we pick a unit 
of mass a t  random and compute the expected weight of the 
molecule of which it is a part (another application of eq 1) 

ii-i, = ~ A , E ( W A J  + WB&(WBJ (22) 

where 

MAfAf 
W A f  = 

MAfAf + Me92  
b'B2 = 1 - W A f  

Substituting into eq 22 yields 

IT&, = 

(2r/f)(l f rp2)MAf2 + (1 + (f - l)rp2))MB,2 f ~ ~ P M A P B ,  

(23) 

which agrees with S t ~ c k m a y e r . ~  Treatment of this system 
to include a condensation by-product is discussed in the 
Appendix. If some of the starting species are oligomers, as 
is often the case, with a distribution of molecular weight, 
Ziegel, Fogiel, and Pariser have discussed which average 
molecular weights should be used in eq 23.13 

In practice Af is often mixed with A2 to control the chain 
length between branch points and small amounts of A1 can 
be present as impurities. I t  is not hard to write the general 
system of equations for Af,'s reacting with B,'s. Following 
Stockmayer's notation4 this can be represented schemati- 
cally 

(2rM~,/f  + M B , ) ( ~  - r(f - 1 ) ~ ~ )  

BJ3 
'94 

A+!%+: 1 2  

A 

The expected weight along f is the same form as before 
but now we must consider all the possible B,'s with which 
the A can react. Thus by a generalization12 of eq 1 

E (  W*OUt) = 
E (  WAOUYA does not react)P(A does not react) + 

1 

j = 1  
E (  WAOUYA reacts with B,)P(A reacts with BgJ) = 

where b, = mole fraction of all B's on B,, molecules 

In direction 4 there will be a relation for each B,. They 
will all be of the same form as eq 15. 

E(WB,'~) = MB, + (gJ - l)E(WBoUt) (27) 

are derived simi- 

E(WB"'~) = pBZiaftE(WAf,'") (28) 

(29) 

The expected weights along 2, and 
larly to 25 and 27. 

E(WAr,ln) = MAf, + (fl - l)E( WAO'~) 

where af,  = mole fraction of all A's on AfL 

flAf, 
.zflAfl 

af, = - 

and p~ is related to PA as in eq 11 

(30) 

Solving this system of equations we obtain 

where 

(33) 

(34) 

If W A ~ ,  is the weight of the molecule to which a random Af, 
belongs, similarly for WB,, then from eq 18, 19, 27, and 29 
it follows that 

(35) 

E ( W B ~ )  = MB, + g]E(WBoUt) (36) 

As before, to find Mw, we take a unit of mass a t  random 
and compute the expected weight of the molecule to which 
it belongs (again using eq 1): 

(37) 
where 

E(WAf,) = MAft i- f1E(WAOUt) 

- 
Mw = ZIWAfcE(WAf,) + Z,~B,E(WB,) 
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Consider the stepwise homopolymerization of Ais, eq 2. 
For this simple case 

Figure 2. flw vs. extent of reaction for several common stepwise 
copolymerizations calculated from eq 39, PA = p~ = p .  

where 

ma = %MAf,Af,/zLfrAf, = ZrMA,af,/fr 

m,‘ = ZrMAf,2Af,/Zrf,Af, = ZrMAf,’af,/f1 (40) 

and mb and mb‘ are analogous for the BgJ’s. 
In eq 39 we have obtained a general relation which covers 

nearly all nonlinear stepwise polymerization. Equations 9 
and 23 are just special cases of eq 39. This result is the 
same as that which Stockmayer obtained by tortuous com- 
binatorial arguments and manipulation of distribution 
 function^.^^^ Equation 39 should also be obtainable in prin- 
ciple from Gordon’s eq 67 in ref 5. 

Figure 2 shows a, plotted vs. p from eq 39 for the most 
commonly encountered stepwise copolymerizations. The 
value of p a t  which a, diverges is called the gel point. This 
asymptote is indicated on Figure 2. From eq 39 we see that 
for the general case a, becomes infinite when 

, 

Our method can be further extended to problems involv- 
ing A and B groups on the same molecule. This problem 
does not appear to have been solved in the literature; how- 
ever, such systems are rare in practice. 
Hz. Higher molecular weight averages are not readily 

measured. In principle it is possible to determine these 
higher averages from ultracentrifuge data. We recall that 

is the ratio of the second moment of the weight distri- 
bution to the first (Flory,2b p 307) or 

We can calculate E ( W )  from the variance of W using 
our recursive method. Recall from probability theory that, 
for a random variable X, 

(43) Var(X) = E(X2)  - E(X)2 

Also if X and Yare independent random variables then 

Var(X + Y) = Var(X) + Var( Y) (44) 

where 
Thus by eq 44 and Var( WA,ioUt) = Var( WAoUt) 

is the weight attached to the i th  branch. 

(46) Var( WAJ = f Var( WAoUt) 

which by using eq 43 becomes 

E(WA:) -E(WAf)2 = f[E((WAout)2) -E(WAoUt)2] 
(47) 

Similarly, 
f-1 

WA~” =  MA^ + ,E W~,io”t (48) 
r = l  

and 
Var( W~in )  = (f - 1) Var( W~out) (49) 

which, using eq 43, becomes 

E((WAi”)2) - E(WAin)’ = 
(f - ~ ) [ E ( ( W A ’ ” ~ ) ~ )  - E ( W A ’ ~ ~ ) ~ ]  (50) 

Similar to the development of eq 5 we can use eq 1 for 

E((WAoUt)2) = pE((WA’”)’) (51) 

the random variable ( W A ~ ~ ~ ) ~  

Solving eq 5, 6, 50, and 51 simultaneously yields 

Substituting eq 52,8, and 9 into 47 gives 

Thus for Af polymerization 

which agrees with the result obtained by Gordon (ref 5 ,  eq 
30). Equation 54 is illustrated in Figure 1 for the polyether 
network of eq 2. One can use the same approach that leads 
to  eq 54 to treat the general case of Af,’s reacting with BgJ’s. 

At this point it may be appropriate to discuss how we are 
using the concept of “randomness” in our models and deri- 
vations. Actually there are three different instances where 
this arises. 

(1) Functional units react with each other “at random”. 
By this we mean, for example, that any unreacted A has an 
equal chance of reacting with any of the unreacted B’s. 
Thus if b, is the proportion of B groups residing on B ,  
molecules, A will have probability b ,  of reacting with a B, .  

(2) In computing weight average molecular weight we 
take a unit of mass “at random”, i.e., all units of mass have 
an equal chance of being chosen. Thus if proportion W A ~ ~  of 
the mass consists of Af,’s, we will have probability W A ~ ,  of 
picking an Af, when we pick a unit of mass “at random”. 

(3) Finally we could pick a molecule “at random”, i.e., all 
molecules have an equal chance of selection. If we then look 
a t  the expected weight of the randomly selected molecule, 
we will be computing the number average molecular 
weight. We have not been able to use this approach to cal- 
culate Mn. mn. However, as Flory and Stockmayer point out, with- 
out intramolecular reactions R, can always be calculated 
from stoichiometry. At extent of reaction P A ,  nn is just the 
total mass, mt, over the number of molecules present, N .  N 
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is just the number of molecules present initially, No, less 
the number of new bonds formed, Nb. 

(55) an = m J(No - N b )  

Considering the general case shown in eq 24 then 

mt = ZiMA,Af, + ZJMB,B, (56) 

and 

while 

Thus 

where P A  was defined in eq 3. Note that  in the special case 
of Af,’s reacting only themselves, two A’s are involved in 
each bond and P A  above is replaced by p.412. 
R, vs. p from eq 59 is illustrated in Figure 1 for the 

tetrafunctional polyether network of eq 2. The effect of 
condensate is also shown. Note that w, is finite a t  pgei. 

Cross-Linking of Polymer Chains 
Network polymers are often formed by reacting together 

side groups on long polymer chains or through unsatura- 
tion in the chain backbone. Such cross-linking or vulcan- 
ization is shown schematically in Figure 3. As Flory2 points 
out random cross-linking can be treated with the same 
equations developed for stepwise reactions. If all the reac- 
tive groups are of the same type then we have a polymer- 
ization of a mixture of species, Aft, where f i  may be quite 
large. If the functionalities are uniformly distributed along 
the chains then 

 MA^^ = fiMc (60) 

where M ,  is the weight between cross-linkable sites and 
each chain end weight is assumed to be M,lz, We also as- 
sume that the cross-linking reaction occurs by simple cou- 
pling of chains with no weight change. 

For the polymerization of a mixture of Aft eq 39 becomes 

(61) 

Let P A  = p be the extent of cross-linking or the fraction of 
repeat units which are cross-linked. Substituting eq 60 into 
eq 34 and 40 for Ma, ma, and ma/ gives 

M w = a +  - m r  pAMa2  
ma ma[l - PA(fe - 111 

(62) 

Combining eq 33 and 60 shows that 

where fwo is the weight average degree of polymerization of 
the initial mixture of long chains.I4 Substituting gives 

Gordon5 in attempting to derive this relation started with 
the Af relation (our eq 9) rather than the proper one for a 
mixture of species, Af,. We see that our result takes the 
proper limit at p = 0 and will diverge at 

A A 

Figure 3. Schematic representation of cross-linking of polymer 
chains. 

which agrees with Flory’s result for the gel point (ref 2b, eq 
13). 

The same substitutions can be made into eq 59 to give 
the number average degree of polymerization 

(66) 

Equation 64 and 66 are useful, simple results which are 
applicable to cross-linking of chains of arbitrary initial mo- 
lecular weight distribution provided they obey eq 60. 

Chain Addition 
Up to this point we have considered networks formed by 

stepwise polymerizations. With a few modifications the ap- 
proach described above can readily be applied to networks 
formed by chain addition. Chainwise polymerizations in- 
volve an initiation step followed typically by hundreds of 
addition or propagation steps ending with termination. 
Thus a t  any time the reaction mixture will consist of un- 
reacted monomer and rather long polymer with essentially 
no species of intermediate size. 

To treat chainwise systems we need to define q ,  the 
probability that an initiated or growing chain will add one 
more unit. In kinetic terms 

- -  
x n  = X n d ( 1 -  PfnJ 

(67) 

where R, is the propagation rate, Rt,  the rate of termina- 
tion by transfer, Rtd the rate of termination by dispropor- 
tionation, and Rt, the rate of termination by combination. 
Once the reaction conditions and the type and concentra- 
tion of reactants is fixed, q will be fixed and it will be ap- 
proximately constant, on the order of 0.99 to 0.999, 
throughout the reaction. 

Consider the reaction of a vinyl with a divinyl such as 
methyl methacrylate with ethylene dimethacrylate: 

R ,  
Rp i- Rtr + Rtd + Rtc 

9 =  

HC-C(CH3j + HC-qCHJ  - 
- 1  - 1  COOCH, 

I 
COOCH 

COOCH, 
I 

H,C=C(CH,) 

- CH2-C(CH3)- CH,-C(CH, j-CH2- (68) 
I 

COOCH, 
I 

I 

COOCH, 
I 

COOCH, 

-CH,-C(CH,j-CH,-C(CH,)-CH,- 
I 

COOCH, 
If the system obeys Flory’s simplifying assumptions, then 
we can represent it schematically as A2 reacting with Af: 

A-A + A-A - --A-AA-AA-AA-AA- 
I 

(69) 

ATA 
1 

-AA-AA-AA-AA- ATA A-A 
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Again we let the A groups react to extent p .  T o  calculate 
flw we consider the weight attached to a randomly chosen 
A group looking out, WAO~~.  I t  will also be convenient to de- 
fine w ~ * ~ ~ ~ ,  the weight attached to an A group which has 
been activated, Le., is part of a chain. Thus following our 
previous approach 

E ( W A O ~ ~ )  = p E (  WA*O’J~) + (1 - p)O (70) 
and 

E(WA*OUt) = qE(WA*in) + (1 - q)E(WT) (71) 

Here E( WT) is the expected weight added in the termina- 
tion step. For termination by transfer a hydrogen atom is 
typically added; for disproportionation, the average of half 
of a hydrogen; and for termination by combination, two 
chains couple. Thus 

(1 - q)E(WT) = Rt,‘MH + Rtd‘M~/2 + RtJE(WA*in) (72 )  

where Rtrl = R,,/(R, + Rt, + Rtd + RtJ; Rtd’, Rtc‘, similar- 
ly. Since MH = 1 and R’ terms <0.01, to a good approxima- 
tion eq 71 becomes 

(73) E(  WA*O~~)  = q’E( W A * ~ ~ )  

with q’ = q + Rt i .  
Following the approach that led to eq 25-29 we obtain 

E ( W A * ~ ~ )  = (1 - Uf)E(WA2*’”) + afE(WApin) (74) 

where E (  W A ~ * ~ ~ )  is the weight attached to a randomly cho- 
sen A* whose parent molecule is an Af, and 

(75 )  

To determine E (  W A ~ - ’ ~ )  we note that one A-A pair will be 
activated but the other f - 2 are not necessarily. Thus 

E (  W.t,pin) =  MA^ + E (  WA*O~~)  

E(W,&,) =  MA^ + E(WA*OUt) + (f - 2)E(WAoUt) (76) 

Combining eq 70 with eq 73-76 we obtain 

aw is usually determined only on the polymeric por- 
tion of the reacting system; the unreacted monomers are 
separated out. Thus we consider only the expected weight 
on A* species rather than all A: 

(78) 

where W A ~ *  is the weight fraction of polymeric species, con- 
sisting of Af‘s 

Bw = w ~ ~ * E ( W A ~ * )  + (1 - WA:)E(WA~*) 

Analogues of eq 35 and 36 give 

E (  WA2*)  =  MA^ + 2E( WA*OUt) 

E(WA~*)  = Maf + 2E(WA*OUt) + p(f - 2)E(W,4*Out) 

where E ( W A ~ * )  is the expected weight attached to an Af 
chosen a t  random from the polymeric portion. Substituting 
these into eq 78 gives 

Gw = W A ~ * M A ~  + (1 - WA,*)MA, + 
[2 f WA,*P(f - 2)]E(WA*OUt)(79) 

The approach used above can readily be generalized as in 
the stepwise case to a mixture of Afi’s, where f i  should be 
even. 

Since q‘ = constant, the gel point will be the extent of 
reaction when eq 77 diverges or 

(80) 

As with &fw, a, is based only on the long-chain portion 
of the reacting system. Thus R, will be the total mass of 
polymeric material divided by the number of molecules. 
The number of molecules is half the number of chain ends 
less the number of cross-links times half the cross-link 
order minus 1, Le., Af‘s which have reacted more than once. 
The number of A’s in the polymeric portion equals 2pAz + 
f ( 1  - (1 - p)f/2)Af while the number of activated A’s is 
2pA2 + fpAf. Thus the number of unactivated A’s in the 
polymeric portion is f ( 1  - p - (1 - p)f12)Af. An activated 
A is a chain end with probability 1 - q f  and an unactivated 
A is a chain end with probability 1. Thus the number of 
chain ends, Nc,*, in the polymeric portion is 

We have derived useful average properties as a function 
of reaction extent for the stepwise polymerization of a mix- 
ture of Af, and B ,  monomers without condensation prod- 
ucts. Specifically eq 39 gives aw, the weight average molec- 
ular weight, eq 59 gives Un, the number average, and eq 41 
gives pgel ,  the extent of reaction a t  the gel point. a, is com- 
puted for the Af homopolymerization. Modifications of 
these equations to treat nonlinear chainwise addition poly- 
merizations and cross-linking are also described. The Ap- 
pendix discusses the problem of condensation products. 
From these relations and the nature of the monomer mole- 
cules it may also be possible to derive other properties such 
as thermal and rheological parameters since these are ex- 
pected to depend on molecular structure. 

The advantage of our recursive technique over the com- 
binatorial approach of Flory and Stockmayer should be 
clear. We derive the molecular weight averages directly 
rather than the complete size distribution and then the av- 
erages. Our derivations are thus much simpler and can be 
generalized further to include chainwise polymerizations, 
condensation products and other nonidealities,’l and post 
gel properties such as cross-link density.15 

Gordon also calculates average properties directly using 
branching theory. His approach appears to be more power- 
ful than ours since it can be used to derive az+l and higher 
averages and can be extended to compute the molecular 
weight averages of the sol fraction after g e l a t i ~ n . ~ J ~  How- 
ever, Gordon’s use of abstractions, such as vectorial proba- 
bility generating functions, makes formulation of specific 
equations for the molecular weight average difficult. Fur- 
thermore, the complexity of the resulting matrix equations 
seems to be unnecessary for many network polymeriza- 
tions. We believe our recursive method can be readily un- 
derstood and applied by the typical polymer chemist. 

Acknowledgment. This work was partially supported 
by the Union Carbide Corporation, the University of Mis- 
souri-Columbia Research Council, and the National 
Science Foundation. 

Appendix. Polymerizations Involving Condensation 
Products 

If a condensation product forms during polymerization, 
such as water in eq 2, the above analysis must be modified 
to accommodate this phenomenon. 



Vol. 9, No. 2, March-April 1976 Molecular Weights of Nonlinear Polymers 205 

First consider the homopolymerization of Af. Suppose 
that a condensate C of molecular weight MC i s  a by-prod- 
uct of an AA bond. We shall compute the weight average 
molecular weight for extent of reaction p .  We proceed as 
with eq 4 and 5 except we must account for the loss of 
weight from the condensate. 

E ( W A O U ~ )  = p [E ( W A ~ ~ )  - Mc] (AI)  

Equation 6 remains unchanged: 

E (  W A ~ ~ )  = MA[ + (f - 1)E( W A O ~ ~ )  

Solving we get 

Now consider an Af unit which has n reacted arms and f - 
n unreacted; denote such a unit as Afn. Let W A ~  equal the 
weight of the molecule to which a random Afn belongs. 
Then 

E(  W A ~ )  =  MA^ - nMc 4- nE( WAin) 643) 

Now consider the moles of Af" for n = 0, 1,. . . , f a t  ex- 
tent of reaction p. If all A's are equally reactive and there 
are no substitution effects, then the number of reacted A's 
on an Af is a binomial random variable with parameters f 
and p. 

Afn = (L)pn(l - p ) f - n A f  (A41 

We can assume that each reacting A contributes mass 
Mc/2 to the condensate,'thus an Afn unit has mass MA[ - 
n(Mc/2). If we define wn to be the proportion of mass (con- 
densate removed) consisting of Af" units then 

If a unit of mass is picked at  random, it will be an Afn with 
probability wnr consequently 

R w =  5 E ( W A p ) W n  (A6) 
n=O 

Substituting from eq A2-A5 this becomes 

Note that if Mc = 0 this agrees with eq 9. Figure 1 shows a 
comparison of eq A7 and eq 9 for the tetrafunctional po- 
lyetherification. 

Stockmayer4 suggested that networks with condensation 
products could simply be treated by replacing MA[ with 
Maf - fMcI2 in the relations derived without condensa- 
tion. This approach is better than ignoring Mc entirely but 
it neglects the unreacted ends of the molecules and can 
only be strictly valid as p approaches 1. The second term in 
eq A7 can be viewed as accounting for these unreacted 
ends. Gordon's approach5 appears to correctly account for 
condensation. 

Now consider the general reaction of Af,'s with B,'s as in 
eq 26. Equations 25 and 28 must be modified 

Equations 27 and 29 remain unchanged. Solving gives 

out = P A ( M b  - MC) + P A P B ( g e  - 1 ) ( M a  .- M C )  

1 - P A P B k e  - l ) ( f e  - 1) 
E(WA 1 

(A101 
out = P B ( M a  - Mc) + PAPB(fe  - 1 ) ( M b  - M C )  

1 - P A P B k e  - l ) ( f e  - 1) 
E(WB 1 

( A l l )  

Again let Af,n represent an Af, unit with n reacted arms and 
f l  - n unreacted. As in the case of Af's reacting with them- 
selves 

E ( W A ~ ~ )  = MA[, - nMc + nZ,bg jE(WBgl ln )  (A121 

Similarly 

E ( W B u n )  = MB, - nMc + nZ,af,E( WAftLn) (A131 

As before 

Af,n = ( k ) p A n ( l  - p,dfr-"Af, (A14) 

BgJ" = (g,')pB"(1 - pB)gJ-nBgJ W 5 )  
Suppose that whenever an AB bond forms, that A contrib- 
utes McA to the condensate and B contributes McB, McA + McB = Mc. Then an Af," weighs MA[, - n M C A  and 

W A , , ~  = (MA[, - nMcA)[AfLn1/mt (A161 

WBgln = (ME, - n M c B ) [ B g J " l / m t  (A171 

are the proportion of mass (minus condensate) accounted 
for by Af," and BgJn units (for mt, see eq A19). As before 

I t  is straightforward, but tedious, to  make the substitutions 
into eq A18. The simplest way to use eq A18 is to program 
eq 27, 29, and A10-18 on a calculator or small computer 
then evaluate them for the specific network polycondensa- 
tion of interest. 

We should also note that an is affected by condensation 
products through the average weight of a monomer unit. 
For example with Af homopolymerization the total mass of 
thesystem, mt, will go from M A f A f o  a t  p = 0 to (MAf - ( f /  
2)Mc)AfO a t  full conversion. In general eq 56 becomes 

mt = C 6 (MA, - nMcA)Aftn + 
k 

r = l  n=O 

1 
C 5 (MB, - nMcB)Bgjn (A191 

j = 1  n s 0  

Thus for Af only 

The effect on an of condensation products, eq A20, is illus- 
trated in Figure 1. 
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ABSTRACT: A simple recursive method is presented which can be used to derive the probability of a finite or dan- 
gling chain in a polymer network. Finite chain probabilities are derived for a variety of networks as a function of 
type and extent of reaction. From these probabilities useful properties such as sol fraction, cross-link density, and 
the number of elastically effective network chains can be readily developed. 

Recently we presented a relatively simple recursive 
method for calculating molecular weight averages up to the 
gel point in nonlinear polymerization.2a In this paper we 
show how a similar recursive method can be used beyond 
the gel point, particularly to write relations for weight frac- 
tion solubles, ws ,  and cross-link density, X. 

We again retain Flory's ideal network assumptions:2b 
(1) all functional groups of the same type are equally re- 

(2) all groups react independently of one another; 
(3) no intramolecular reactions occur in finite species. 
We will also use an elementary law of conditional proba- 

b i l i t ~ . ~  Let A be an event and .& its complement, B any 
other event, and P(BIA) the conditional probability of B 
given that A has occurred. Then the law of to ta l  probabili-  

active; 

Let polymerization procede until some fraction p of the A's 
have reacted. Pick an A group a t  random, A' in eq 2. Now 
we need to know what is the probability that following L 
(looking out from the molecule) leads to a finite or dan- 
gling chain rather than to the infinite network, i.e., to the 
walls of the container. Let F A O " ~  be the event that -5 is the 
start of a f i n i t e  chain, then from eq 1 it follows that 

P(FA""~) = P(FA""YA reacts)P(A reacts) + 
P(FA""YA does not react)P(A does not react) = 

P(F*'")p + l(1 - p )  = @(FA'") + 1 - p (3) 

where Fain is the event that L in eq 2 is the start of a finite 
chain. For A" to lead to a finite chain all of the other arms 
of Af must be finite. Thus 

P ( F A i n )  = P(FAoUt)f- l  (4) tY 

and, as with the weight average,2a the repetitive nature of 
this simple branched molecule leads us back to the starting 
situation. Combining eq 3 and 4 we can solve for  FA""^) 

(5) 

P(B) = P(BIA)P(A) + P(BI.&)P(A) (1) 

Probability of a Finite Chain 
Stepwise po~ymerization of A ~ .  I t  is most useful to de- 

termine whether a group selected from the polymerization 
a t  random is part of a finite chain. Consider first the simple 
reaction between similar f functional monomers. We can 

pP(FAo"t)f- l  - P(FAout )  - p + 1 = 0 

or p ( ~ ~ i n )  .. 

schematically represent the stepwise homopolymerization 
of Af by 

We desire roots of eq 5 and 6 between 0 and 1. Note that eq 
6 can be rewritten as + ( x )  = x where + ( x )  = ( p x  + 1 - 
p ) f - l  is the probability generating function4 of a Binomial 
random variable with parameters f - 1 and p .  I t  can be 
shown that our situation is exactly that of a branching pro- 
cess with offspring distribution Binomial(f - 1,p) and that 
our event of a finite chain corresponds to extinction. The 
probability of extinction is the unique solution of + ( x )  = x 
in the interval (0,l) if it exists and 1 o the rwi~e .~  (The anal- 
ysis in the remainder of this section can be justified in a 
similar manner.) From eq 4 it follows that eq 5 will have a 
root in (0,l) if and only if eq 6 does; this will happen when 
D > (f - l)-' = pgel.  Physically when P ( F A O ~ ~ )  = 1 the sys- 

A + +  

A' 41 
A"J2 

(2) 
A + -  3 I 1, AA- 

A 

p 
1 


