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2.14.1 Introduction 

Small-angle scattering from complex structures often involves 
understanding the relationship between related structural fea-
tures observed at different size scales. Traditional scattering 
functions and even traditional approaches are generally not 
sufficiently flexible to describe complex hierarchical structures. 
Over the past two decades, an approach has been developed 
that allows for coupling of simple and general scattering laws to 
describe hierarchical structures with a great degree of flexibility. 
This unified function1,2 results in a generic parameterization of 
scattering patterns. The function can be linked to structural 
models in order to limit the fitting parameters and to under-
stand the fitting results. The approach is to apply a general 
scattering function adaptable to any number of hierarchical 
levels and to limit the parameters in this function based on 
the interpretation of structural models in the context of this 
general scattering function. This approach diverges from the 
traditional approach in scattering that considers the Fourier 
transform of a specific structural correlation function based 
on a model structure or the inverse process involving analysis 
of an inverse Fourier transform of the scattering measurement. 
For complex hierarchical systems where a discrete structural 
model is not available, the unified approach often offers the 
only reasonable approach to understand small-angle scattering. 
The unified function offers the opportunity to resolve scattering 
features obscured by the overlap of structural levels. 

2.14.2 Structural Levels 

In describing small-angle scattering from hierarchical struc-
tures, it is useful to define a base unit of structure as a 
structural level. A structural level displays a single average and 
finite structural size defined by a radius of gyration and an 
associated structural scaling regime that quantifies the statisti-
cal structural nature of the level. Many hierarchical structures 
can be described by a series of structural levels. For example, a 
polymer gel following the gel tensile-blob (GTB) model3,4 dis-
plays three structural levels, the Kuhn unit, the tensile coil, and 

the extended structure (Figure 1). On the smallest scale, the 
Kuhn unit or persistent unit is common to scattering from all 
polymer systems based on linear chains in dilute solution and 
reflects local chain rigidity associated with chemical bonds, 
steric considerations, and other factors that can affect chain 
stiffness, such as local charge. The Kuhn/persistent unit displays 
the structural scaling of a rod. That is, from the Kuhn length to 
the smallest observable sizes in X-ray or neutron scattering, the 
mass of the Kuhn segment scales with the size of observation to 
the power 1. In the GTB model, Kuhn units compose local coil 
structures (Figure 1) governed in size, ξ, by a balance between 
conformational entropy, enthalpy of interaction between the 
solvent and the polymer, and the network connectivity. This 
second structural level displays a scaling regime where mass 
scales with size of observation by approximately the power 5/3 
following good-solvent scaling. In equilibrium-swollen gels, a 
third structural level is observed that reflects a regime domi-
nated by large-scale stresses on the network associated with 
swelling. In this regime, swelling forces applied over large dis-
tances provide sufficient torque to overcome entropically 
driven randomization of the structure and a second low-q 
regime of linear scaling is observed. Figure 2 shows typical 
scattering from an equilibrium-swollen, end-linked polydi-
methyl siloxane (PDMS) gel that displays two of the three 
scaling regimes discussed above. In PDMS, the persistence 
length, 2.5 Å, is too small to be observed at high q. 

The unified approach to the analysis of complex hierarchi-
cal structures relies, in the most part, on our ability to quantify 
the radius of gyration, Rg, and power-law scaling regimes that 
can be observed in scattering through Guinier’s law, 

−q2R2 

IðqÞ ¼ G exp g 
! 

½1% 
3

and a generalized Porod’s law, 

IðqÞ ¼ Bq − P ½2% 

Here G reflects the contrast and includes the number concen-
tration of structural units described by Rg, as well as the square 
of the number of electrons (or another basic unit of scattering) 
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are generally applicable only when one or more decades of 
power-law scaling can be observed and the limiting values for q 
are also ill-defined. Then, while eqns [1] and [2] are quite general 
in theory, in actual use they are limited, and these limitations can 
lead to errors in quantification of scattering data when they are 
unreasonably applied, especially in regimes of overlap. 

For these reasons, it is desirable to define first a scattering 
equation that can incorporate eqns [1] and [2] in a nonexclusive 
manner over a wide range of scattering vector, and second, to 
describe the combination of scattering functions from local 
structural levels to describe a hierarchy such as that observed in 
polymer gels. In the context of this scattering framework, limita-
tions can be placed on the values of G, Rg, B, and  P depending on 
our understanding of structural models. For example, the four 
fitting parameters for the Kuhn or persistence level of a gel are 
fully described by a single fitting parameter, the Kuhn length or 
persistence length,5,6 if the chemical composition and concen-
tration of the polymer and solvent are known. This size is of 
importance since it reflects the base, zero conformational 
entropy unit for thermodynamic and rheological calculations. 
The Kuhn length can be obtained from first principles using the 
rotational isomeric states model7 so that the first structural level 
could be wholly predetermined. 

A number of analytic and empirical functions have been 
proposed that describe a single structural level, that is, the 
combination of eqns [1] and [2], for specific structural models. 
For fractal and polymer systems, the most important of these 
equations is that of Debye for a Gaussian polymer chain, 

2G 
IðqÞ ¼  

q

!
exp 

!
− q2R2 − − 2 2 

4R4 g
g

"
 
!
1  q Rg

""
½3%

For this equation, at high q, B =2G/R2 
g and P = 2 for the 

two-dimensional (2D) random coil. Unfortunately, Debye’s 
approach cannot be generalized in a discrete form to 

Figure 1 Two structural levels of the gel tensile-blob model. Shown ar
the tensile coil, ξ, and the extended tensile structure, L. Adapted from 
Sukumaran, S. K.; Beaucage, G. Europhys. Lett. 2002, 59, 714–720, 
Figure 1.3 Tension on the chain overcomes entropy-driven chain disorde
at large scales resulting in a linear structure that is random at scales 
smaller than the tensile-blob size, ξ. 

e 

r 

per structural unit. In eqn [2], B reflects the contrast as well as 
characteristic sizes specific to the type of structure, while P 
reflects the nature of the structure and is interpreted differently 
in two conditions. For P larger than 3, we observe surface 
scattering with the special case of P = 4 for smooth, sharp inter-
faces (Porod’s law), and for P smaller than 3, we observed 
mass-fractal scaling, which is the general condition for poly-
mers in dilute solution and reflects all three of the structural 
levels mentioned for a polymer gel. 

There are several disadvantages to the direct application of 
eqns [1] and [2] in the analysis of scattering data from hierarch-
ical systems. For eqn [1], the regime of strict applicability is 
somewhat narrow and is defined by Rg, so that one needs to 
guess Rg in order to determine the fitting range and the fitting 
range affects the resulting Rg. In a hierarchical structure, at low q, 
the next larger structural level interferes, often to totally obscure 
the range of applicability, and at higher q, eqn  [2] obscures the 
functionality of eqn [1]. Power-law equations, such as eqn [2], 

Figure 2 Small-angle neutron scattering from a 22 000 g mole−1 end-linked PDMS equilibrium-swollen network in D-benzene and its equivalent PDMS 
solution. The data are from Argonne National Laboratories, Intense Pulsed Neutron Source, SAND instrument. Fits are to the unified equation using the 
GTB model. Adapted from Sukumaran, S. K.; Beaucage, G.; Mark, J. E.; Viers, B. Eur. Phys. J. E 2005, 18, 29–36, Figure 2.4 At low q (large size scales), an 
extended linear regime is observed that displays a –1 power-law decay. At smaller size scales (larger q), a self-avoiding walk is observed that displays a 
–5/3 power-law decay agreeing with the structure shown in Figure 1. 
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dimensions other than two such as in good-solvent scaling, 
which is the most common condition for polymers in solution. 
Benoit8 has extended eqn [3] to account for branched polymers 
in Gaussian conditions and has presented an integral equation 
based on eqn [3] that can account for arbitrary mass-fractal 
dimension.9 The approach of eqn [3] was also used to describe 
the scattering from cyclic polymers using an integral equation 
by Cassasa,10 though the Cassasa function has recently been 
brought into question.11 The empirical Ornstein–Zernike equa-
tion is often substituted for eqn [3] since it is of a simpler form, 
but it displays an incorrect extrapolated value for B at high q. 
Other empirical functions targeting arbitrary mass-fractal 
dimensions based on the arbitrary Debye–Bueche ‘cut-off 

12,13function’, 

−r 
γ ðrÞ ¼ exp  ½4% 

ξ 

have also been proposed.14–18 The appropriateness of these 
empirical equations are discussed in a recent article by Rai 
et al.19 

Single structural levels for three-dimensional (3D) objects 
have been obtained by direct Fourier transform of calculated 
correlation functions. The simplest and most widely used of 
these is the sphere scattering function given by, 

% &2 

R4 =25G/Rg
4. 

Debye and Bueche12 proposed an empirical function to 
describe scattering from disordered 3D systems that is widely 
used for particles displaying Porod scaling. The Debye–Bueche 
empericism (obtained from the ad hoc correlation function, eqn 
[4]) has been generalized to arbitrary surface-fractal dimension, 

− ð6 − dsÞ=2IðqÞ ¼ Gð1 þ q2ξ2Þ ½6% 

where ds is the surface-fractal dimension and ds = 2 for the 
Debye–Bueche empericism. Through an extrapolation to low 
q and comparison with eqn [1], ξ2 ≅ 2R2=3ð6−dsÞ. However,g 
eqn [6] is obtained for ds = 2 from a correlation function with 
no physical meaning and is further empirically extended for 
other surface-fractal dimenisons, so the functional form is 
probably incorrect except in gross features. ξ has no real physi-
cal meaning in this equation.19 

For complex structures such as native-state proteins and 
other 3D biological structures, the direct Fourier transform of 
calculated structures is possible and the inverse transform of 
scattering can be used to obtain a correlation function that can 
be further analyzed corroborating a molecular model using 
knowledge from NMR and X-ray diffraction.20,21 In some 
cases, it is possible to perform an inverse transform on the 
scattering data and obtain a correlation function that can be 
analyzed in terms of gross features. Generally, such an analysis 
is limited to a single structural level and the connection 
between features in the measured scattering curve and those 
in the resulting analysis is lost. Further, data manipulation 
including extrapolation to high and low q, truncation, and 
smoothing may introduce artifacts in the results. 

2.14.3 Unified Function 

A general approach to the description of structural levels in 
scattering was analytically derived in 19951 and is widely 
used for the analysis of hierarchical systems. The unified func-
tion is based directly on eqns [1] and [2], 

! 
2R2−q g −PIðqÞ ¼ G exp þ Bðq'Þ ½7% 
3

where, 

q' ¼q n ! "o3 ½8% 
kq Rgerf pffiffi

6

and k has an approximate value of 1.06 for P = 2 and 1 for 
P > 3.22 Figure 3 shows a calculation using eqn [7] for a 

3ðsin qR − qR cos qRÞ 
IðqÞ ¼ G ½5% ðq3R3Þ 

where Rg
2 = 3/5R2 and R is the radius of the sphere. At high q, 

this function extrapolates to eqn [2] with P = 4 and B = 9G/ 

Figure 3 Log–log plots of I(q) vs. q for the unified function for (a) Debye 
equation for Gaussian polymer coils (eqn [3]) using B = 2G/ 2Rg. Adapted 
from Beaucage, G. J. Appl. Cryst. 1996, 29, 134–146, Figure 1.22 

(b) Polydisperse spheres following eqn [5]. Adapted from Beaucage, G. J. 
Appl. Cryst. 1995, 28, 717–728, Figure 11.1 In both cases, the dark line is 
the calculated unified function and the points are direct calculations from 
structural models. 
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Gaussian, fractal chain (eqn [3]) and for a population of 3D 
spheres (eqn [5]), demonstrating that the unified function can 
be applied to both fractal and nonfractal structures representa-
tive of two generally exclusive categories of structure in 
small-angle scattering. 

Equation [7] can be extended to describe correlated 
systems,2,23 

−q2Rg
2 

!Þ−PG exp þ Bðq3 
IðqÞ ¼  ½9' 

1 þ pθðqÞ 

where, 

sin qς − qς cos qς
θðqÞ ¼ 3 3 ½10' 

ðqςÞ

and ζ is the correlation length corresponding to the average 
distance between spherically correlated particles and p is the 
packing factor that is 8 times the ratio of the occupied to 
the available volume. p has a maximum value of 5.92 for 
closest packed structures. Equation [10] is the amplitude 
function for spherical scattering, indicating that the 
domains are loosely arranged in spherical shells. Larger 
values of the packing factor, p, are possible for nonspherical 
packing such as for lamellar stacking but an alternative to 
eqn [10] is needed under these conditions such as integral 
amplitude functions for lamellar structure. Figure 4 shows a 
fit to I(q) obtained by small-angle X-ray scattering (SAXS) 
of correlated silica particles in a polydimethyl siloxane elas-
tomer matrix using eqn [9]. 

2.14.4 Hierarchy of Structural Levels 

For hierarchical systems composed of ‘n’ structural levels, eqn 
[7] is extended using the Guinier function as described by 
Beaucage,1 
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Figure 4 Fit of eqn [9] to SANS data (dark line) from a siloxane rubber 
filled with silica particles. Adapted from Beaucage, G.; Schaefer, D. W. J. 
Non-Cryst. Solids 1994, 172–174, 797–805, Figure 10.2 The data display 
a correlation peak indicating that the nanoparticles show a preferred 
separation distance. 

! ! !
n 2R2 2R2 X
 

−q g;i −q g;iþ1 !PiIðqÞ ¼  Gi exp þ Bi exp q i ½11' 
3 3i¼1 

where, 

½12' 

Equation [11] implies that each succeeding structural level 
(larger in size as the index increases) is composed wholly 
from the previous, smaller level. For example, a fractal aggre-
gate displays a primary structural level (i = 1) composed of 
particles with a Porod-scaling regime. These primary particles 
completely compose an aggregate structure that may be 
randomly branched in a second structural level (i = 2). The 
second structural level would display a fractal-scaling 
regime. Aggregates often cluster into agglomerates, which 
display a second Porod or surface-fractal-scaling regime at 
low q (i = 3). Figure 5 shows a schematic of two structural 
levels, as well as self-similarity in the fractal regime (central 
sketch). 

An equilibrium-swollen polymer gel3,4 also displays a 
hierarchical structure generally beginning with the Kuhn seg-
ment (i = 1), proceeding to the tensile coil (i = 2)  and  the  
extended structure (i = 3) as discussed above. Each succeeding 
hierarchical level is wholly composed of the previous level. In 
some cases, a structural level is not part of the hierarchical 
tree. For example, a polymer gel might contain bubbles that 
display Porod scaling. Such unrelated structures could be 
added to eqn  [11] if there is no significant correlation 
between the position of the unrelated structures and that of 
the hierarchical structure, that is, if the bubbles do not dec-
orate the polymer or otherwise interact with the polymeric 
structure. 

2.14.5 Structural Models and the Unified Function 

Equation [11] offers a new method for the analysis of 
small-angle scattering since application of eqn [11] to complex 
structural systems does not require calculation of the correla-
tion function. In this way, eqn [11] offers a direct interpretation 
of scattering data based on our understanding of eqns [1] and 
[2] in the context of specific structural models. Several exam-
ples are discussed below. 

The main goal in applying eqn [11] is to couple a structural 
model with the scattering function so as to reduce the number 

b 2a Rg 

Figure 5 Fractal aggregate composed of primary particles of size b 
showing self-similarity in the fractal-scaling regime, b < 2a < 2Rg. Adapted 
from Beaucage, G. J. Appl. Cryst. 1996, 29, 134–146, Figure 4.22 (Circles 
in the right cartoon are composed of the aggregates in the middle 
cartoon.) 

q! ¼q n ! "o3 kqRg;ierf pffiffi
6
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of free parameters. For example, a two-level structure would 
display eight free parameters, Gi, Rg,i, Bi, and Pi for each level. If 
a sample is known to be composed of polydisperse rods with 
aspect ratios larger than about 2.5, then we know that the 
smallest structural level, level 1, will display P = 4 for a smooth, 
sharp surface and the larger level, level 2, will display P = 1 for 
linear scaling between the diameter and the length of the rod. 
This leaves six free parameters. The smallest level radius of 
gyration for the rod of radius, R, is  Rg,1

2 = 3R2/4 and for the 

larger level is Rg,2
2 = L2/12+R2/2. The scaling prefactor for level 2 

G1/(R
3L).1,2is B2 = πG2/L and for level 1 is B1 = Generally, 

Gi + 1 = zGi, where z is the weight average number of subunits 
of type ‘i’ in the structure ‘i +1’.22 For a rod, G2 = (3L/R)G1. 
Scattering for the rod hierarchical structure is determined by 
three parameters: R, L, and a contrast factor G1. Similarly, three 
parameters determine the two-level hierarchical scattering from 
disks. Table 1 lists the free parameters and values for each of the 
four parameters in each structural level for a variety of 

Table 1 Values of the Unified Equation Parameters for a number of structural models 

Structural model 

Sphere 

Polydisperse 
particles 

Rod(L > 2.5 R) 

Disk (D > 2.5 t) 

Monodisperse, 
linear polymer 

Gel-tensile blob 
model 

Polydisperse 
branched 
polymer in good 
solvent 

Cyclic polymer 

Polydisperse 
branched fractal 
aggregates with 
agglomerates 

Free 
parameters 

R, G1 

Rg,1, G1, 

PDI ¼ 
R4 
g B1 

1:62G1 

R, L, G1 

R, t, G1 

lp, z, G1, k 

lp, G1, L, χ 

ξ ¼ 
lp 

ð1−2 χÞD 

D ≅ 
1 
17 

df = cdmin 
dmin, c, G1, 
z, k, Cp. 

dmin = df (1- ln 
2/ln z) z, G1, 
lp, k, 
df = 2.12 

G1, z, NAgg, k, 
Cp 

G 

G1 

G1 

G1 

G2 ¼ G1 
3πL 
4R 

G1 

G2 ¼ G1 
3πt 
4R 

G1 

G2 = zG1 

G1 

G2 ¼ kG1 
ξ 
2lp 

# $5=3 

G3 ¼ G2 
L 
ξ 

# $

G1 

G2 = zG1 

G1 

G2 = zG1 

G1 

G2 = zG1 

G3 = NAgg G2 

Rg 
2 

3 
5 
R2 

3〈R8 
1 〉 

5〈R6 
1 〉 

¼ 
1:62G1PDI1 

B1 

# $1 
2 

3R2 

4 
L2 

12 
þ 
R2 

2 
t 2 

4 
t 2 

12 
þ 
R2 

2 
l2 
p 

3 
4kz2=df l2 

p 

1 þ 2 
df 

! "
2 þ 2 

df 

! "

l2 
p 

3 
25ξ2 

176 

L2 

12 
þ 
ξ2 

8 

l2 
p 

3 
4kz2=df l2 

p 

c þ 2 
dmin 

! "
1 þ c þ 2 

dmin 

! "

l2 
p 

3 
4k ðz=2Þ2=df l2 

p 

c þ 2 
dmin 

! "
1 þ c þ 2 

dmin 

! "

3〈R8 
1 〉 

5〈R6 
1 〉 

¼ 
1:62G1PDI1 

B1 

# $1 
2 

kz2=df d2 
p 

c þ 2 
dmin 

! "
1 þ c þ 2 

dmin 

! "

3〈R8 
3 〉 

5〈R6 
3 〉 

¼ 
1:62G3PDI3 

B3 

# $1 
2 

B 

9G1 

ð2R4Þ 
9G1〈R2 

1 〉 
2〈R6 

1 〉 
¼ 

1:62G1PDI1 

R4 
g;1 

2G1 

R2L2 

πG2 

L 
2G1 

R2t 2 

2G2 

R2 

πG1 

2lp 

zdf G1Γ df 
2 

! "

R df g;2 

πG1 

2lp 

3G2Γ 5 
6 
( )

R5=3 
g;2 

G1Γ 1 
2 
( )

Rg;3 

πG1 

2lp 

zdminG1Cp Γ df 
2 

! "

R df g;2 

πG1 

2lp 

zdminG1Cp Γ df 
2 

! "

R df g;2 

9G1〈R2 
1 〉 

2〈R6 
1 〉 

¼ 
1:62G1PDI1 

R4 
g;1 

zdminG1Cp Γ df 
2 

! "

R df g;2 

9G3〈R2 
3 〉 

2〈R6 
3 〉 

¼ 
1:62G3PDI3 

R4 
g;3 

P 

4 

4 

4 

1 

4 

2 

1 

df 

1 

5/3 

1 

1 

df 

1 

2.12 

4 

df 

4 
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Figure 7 Schematic of particles composed of subparticles with a radius 
of gyration for the entire particle, Rg,2, and a radius of gyration for the 
subparticles, Rg,1, are observed, but the cut-off radius, Rsub, differs from 
Rg,1. Generally, Rg,1 = Rsub. Adapted from Beaucage, G. J. Appl. Cryst. 
1995, 28, 717–728, Figure 9.1 

2.14.6 Examples of Structural Models and the Unified 
Function 

Several examples of the application of eqn [11] to experimen-
tal data are shown below. Figure 8(a) shows a fit to scattering 
from branched polyethylene in dilute solution that displays 
close to good-solvent scaling.6,26 The model fits two structural 
levels, the Kuhn length, which is monotonic in short-chain 
branching, and the chain coil that shows changes with 
long-chain branching. From this global fit, it is possible to 
calculate the number of short-chain branches, number of 
long-chain branches, chain polydispersity (Mz/Mw), the 
hyperbranch (branch on branch) content, the mole fraction 
branches, and the average branch length6,26,27 using the uni-
fied function and a branching model. A similar approach can 
be used for fractal aggregates.19 

Figure 9(a) shows a combination of light scattering and 
X-ray scattering data for glass microfiber nonwovens.28 Light 
scattering was performed in benzyl alcohol that almost contrast 
matches silica. The data are fitted to two structural levels. The 
microfibers display Porod scattering at high q and a 

Figure 6 (a) Unified calculation compared to calculation for polydis-
perse rods with two structural levels, rod diameter and rod length. 
(b) Unified calculation compared to calculation for polydisperse disks with 
two structural levels, disk thickness and disk diameter. Adapted from 
Beaucage, G. J. Appl. Cryst. 1995, 28, 717–728, Figures 13 and 14.1 In 
both cases, the dark line is the unified calculation. 

structural models. Figure 6 shows eqn [11] compared with 
exact scattering functions for rods and disks using the para-
meters listed in Table 1. The exact functions display oscillations 
associated with the monodisperse structural sizes. Equation 
[11] does not display these oscillations but follows the gross 
scaling and size features for these structures. 

Equation [11] can be modified in cases where the cut-off 
radius of gyration differs from the substructural radius of gyra-
tion such as shown in Figure 7. In this case eqn [11] becomes,1,2 

! !
2R2−q −q2R2 P2g;2 sub 'IðqÞ ¼  G2exp þ B2exp q 2
3 3 

! ! 
2R2 

g;1 P1þ  G1exp 
−q

þ B1q' ½13%13

This approach has proven useful in some studies of carbon 
black in polymer matrices.30 

self-avoiding walk at larger sizes, df = 5/3, analogous to poly-
mers in good solvent (Figure 8(a)). Figure 9(b) shows X-ray 
scattering from surface-fractal aggregates of carbon black in 
polymethyl methacrylate. The primary particles display turbos-
tratic graphitic structure at high q reflected by a power-law −2 
regime. The scattering near q = 1Å−1 is diffraction from the 
graphitic carbon nanoparticles. 

Figure 10 shows SAXS from two hierarchical structures in 
polyacrylonitrile and isotactic polystyrene foams produced by 
supercritical extraction of semicrystalline polymer gels.31,32 

Both foams display three structural levels, the first two of 
which correspond to uncorrelated lamellar crystals and follow 
the parameters listed in Table 1 for lamellar scattering. The 
lamellae compose larger-scale structures that are apparent in 
the micrographs of Figures 10(c) and  10(d). For the ball 
morphology, the low-q structural level follows sphere 
scattering. 

2.14.7 Polydispersity and Asymmetry for Porod 
Scattering 

For structures that display Porod scattering, following eqn [2] 
with P = 4, a relationship exists between the Porod prefactor, B, 
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Figure 8 Unified fit to two SANS data. (a) From polyethylene samples in D-paraxylene showing good-solvent and Kuhn scaling. Adapted from 
Ramachandran, R.; Beaucage, G.; Kulkarni, A. S.; et al. Macromolecules 2008, 41, 9802–9806, Figure 1,6 showing close to good-solvent scaling. (b) From 
D-polyhydroxybutyrate (PHB) in hydrogenous PHB (adapted from Beaucage, G.; Rane, S.; Sukumaran, S.; et al. Macromolecules 1997, 30, 4158–4162, 
Figure 35) showing Gaussian scaling. The solid line is the unified fit composed of two structural levels, coil scaling at low q and persistence at high q, –1 
power-law slope. 

Figure 9 (a) Light and X-ray scattering from a nonwoven glass microfiber mat. Adapted from Beaucage, G.; Sukumaran, S.; Rane, S.; Kohls, D.J. J. 
Polym. Sci.: Polym. Phys. 1998, 36, 3147–3154, Figure 2.28 Two structural levels are displayed, a self-avoiding walk at low q and Porod surface scattering 
at high q. (b) Scattering from carbon black in a polymethyl methacrylate (PMMA) matrix showing three structural levels. Adapted from Beaucage, G.; 
Rane, S.; Schaefer, D. W.; et al. J. Polym. Sci.: Polym. Phys. 1999, 37, 1105–1119, Figure 8.34 At low q, rough-surfaced solid aggregates are observed, 
power-law decay of –3.58; at intermediate q, Porod surface scattering is observed from the primary particles; and at high q, a  –2 decay reflecting 2D 
graphitic layers is observed. 

and the polydispersity and asymmetry of the structures. maximum of about 9. For particles displaying a log-normal 
Monodisperse spherical particles display a minimum in B rela- distribution in size, there is a simple relationship between PDI 

24,25tive to G, and the standard deviation and geometric standard deviation, 

81G 1:62G ( )1Bmonodisperse;sphere ¼ ¼ ½14% # $1=2 5R2 =2 
50R4 R4 ln PDI gg g σ ¼ ln σg ¼ and m ¼ 

12 3 expð14σ2Þ 
The ratio PDI = BR4

g/1.62G is a scattering polydispersity index 
½15%(PDI) that ranges from 1 for monodisperse spheres to a 
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Figure 10 Polyacrylonitrile and isotactic polystyrene structures composed of uncorrelated lamellar crystals produced by supercritical extraction of 
semicrystalline gels. (a) and (c) correspond to ‘strut’ morphology, while (b) and (d) correspond to ‘ball’ morphology. Data are fit using the unified function 
with three structural levels in increasing size scale: a lamellar model for levels 1 and 2 and a Porod regime for level 3. For the ‘ball’ morphology, spherical 
restrictions were used for level 3. (a and b) Adapted from Beaucage, G.; Aubert, J. H.; Lagasse, R. R.; et al. J. Polym. Sci.: Polym. Phys. 1996, 34, 
3063–3072.31 Figures 2 and 8, and (c and d) adapted from Aubert, J. H. Macromolecules 1988, 21, 3468–3473, Figure 9.32 

where m is the median particle radius and the mean radius is For a linear polymer,22 

given by 〈R〉¼m expðσ2=2Þ.24 The Sauter mean diameter, dp, ! "∞ 
can be obtained from the invariant, Q ¼ ∫0 q

2IðqÞdq and B, df df GΓ df
BRg 2 ! " ¼ df and 1 ¼ ½18% 

dp ¼ 
6Q ¼ 

6 〈V〉 ½16% GΓ d
2
f BRg 

df 

πB 〈S〉 

Figure 11 compares the log-normal distribution for titania nano- For a regular object (disk, rod, sphere), 
particles obtained from the unified function with a direct particle 

dfcounting using transmission electron microscopy (TEM) and with BRg ! " ¼ 1 ½19%
a SAXS data conversion using the maximum entropy method. dfGΓ 2 

2.14.8 Restrictions for the Unified Function For any fractal structure,29 1 ≤ df < 3,  
Parameters 

dfdf df GΓBRg 2The parameters in eqn [11] are limited to a viable range of 1 ≤ ! " ≤ df and 1 ≤ ≤ df ½20% 
df dfvalues due to certain physical limits. P is limited to 1 ≤ P ≤ GΓ BRg2 

approximately 5. For scattering that follows Porod’s law, 
P = 4, the power-law prefactor must follow, When the second expression in eqn [20] is not followed, the 

fractal structures may be highly polydisperse in size. It is pos-
1:62G sible to account for this polydispersity as described in≤ BPorod ≤ approximately 9 ½17% 
BR4 

g References 19, 26, and 27. 
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Figure 11 (a) SAXS from titania nanoparticles and unified fit. dp = 34.9 nm, PDI = 14.4, Rg = 44.2 nm. (b) Particle size distribution for titania unified 
analysis of Porod regime, TEM particle counting, and a scattering integral method. Adapted from Beaucage, G.; Kammler, H. K.; Pratsinis, S. E. J. Appl. 
Cryst. 2004, 37, 523–535, Figures 5(a) and 5(b).24 

2.14.9 Software for Unified Fits 

A useful software for unified fits has been written by Jan Ilavsky 
at the Advanced Photon Source, Argonne National 
Laboratories. This software is available for download 
at http://usaxs.xor.aps.anl.gov/staff/ilavsky/irena.html. The 
code requires the Igor Pro program. A trial version of Igor Pro 
can be obtained at www.wavemetrics.com. 

2.14.10 Conclusion 

This section has briefly outlined the uses of the unified function 
for modeling hierarchical structures in small-angle scattering. A 
short overview of models that describe a single structural level 
was given and the unified function was described. Coupling of 
a wide range of structural models to the unified parameters was 
presented. This is not an exhaustive list. Use of the unified 
function to determine particle size distributions was demon-
strated and some general restrictions to the fitting parameters 
were presented. 

The unified function has proven useful to understand 
small-angle scattering from disordered systems displaying com-
plex structures. It has even shown use in understanding the 
transition from disordered, unfolded state in proteins and 
RNA to the folded state.33 However, the function is not applic-
able to systems that display high degrees of regularity such as 
native-state proteins or monodisperse particulates. There is also 
some danger in the application of the unified function without 
taking heed of the limitations to the fitting parameters men-
tioned above, particularly restrictions in the Porod regime on 
the power-law prefactor. While we have demonstrated that the 
function can be used in quite highly polydisperse systems both 
for fractal26,27 and solid particulate systems,19,24,25 some care 
must be taken in the analysis of these systems. Further, it is 
generally not possible to distinguish between asymmetry and 

polydispersity in scattering data and care should be take in the 
analysis of data that displays both asymmetric particles and 
high degrees of polydispersity.34 
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