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1 INTRODUCTION

Mixing is such a common operation that newcomers to the field often
wonder why mixing is so hard to measure. We all have an intuitive under-
standing of the difference between good mixing and bad mixing, but in
practice it is guite difficult to assign numbers to the quality of mixing and
even more difficult to understand what those numbers mean.

To get a better understanding of the problem, look at the mixture pat-
terns in Figures | and 2 and then consider these questions:

1. Which is the best mixture?
Is there more interfacial surface area in Figure 2a or b?

3. How much mixing would be required to make Figure 2a as well
mixed as Figure 17

4. Suppose Figure 1 is a micrograph of a mixture of two different color
polymers at a magnification of x 1000, Is it well enough mixed to
use on the dashboard of an automobile?

The goal of this chapter is to provide tools for answering these types of
questions for polymer mixing operations. It will be necessary to define
exactly what is the quality of mixing. This is because it is often easy to
come up with a number related to the quality of mixing but difficult 1o
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know what that number means. Also, there are several different definitions
of quality of mixing, each subject 1o certain measurement technigues. To
undersiand the measurements one must know what the definitions mean,
when they may be applied, and what their limitations are.

2 DEFINING QUALITY OF MIXING

2.1 Mixtures, Mixing, and Composition in a Point

A mixrure is simply a combination of two or more substances, and mixing
is an operation whose purpose 15 (o increase the spatial homogeneity of a
mixture. Implicit in these definitions is the idea that any mixture can be
examined on a fine enough scale 1o see the two different components.
These may be visible to the naked eye in a coarse mixture, but a powerful

—

| S\

Figure 1 Mixture section similar to those observed in single-screw extruders.
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Figure 2 Sections of layered mixtures with (a) uniform striation thickness, and
(b} wide distribution of striation thickness.
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microscope may be required to see them in a fine mixture. However, for all
mixtures there is some level at which segregation of the components of the
mixture is visible.

In the best of mixtures, segregation of the components may exist only
on the atomic or molecular scale. For example, the sodium and chlorine
ions in a salt crystal are mixed on this scale. However, we deal here only
with mixtures on a continuum scale. That is, we look at mixtures on a scale
fine enough to see the differences in composition from point to point, but
never on such a small scale that we see individual molecules.

This makes it possible to talk about “composition at a point” in a mix-
ture, in the same sense as one talks of temperature at a point in heat transfer
or stress at a point in mechanics. Composition measures the relative amount
of one component present at that point in the mixture.

To see how we treat composition, consider the following analogy be-
tween a black-and-white photograph and a mixture. The photograph is
actually made up of extremely small black dots on a white background
(analogous to the molecules in our mixture), but we can look with our eyes
at any spot of the photograph and assign a value 1o the gray level (analo-
gous to the composition at that point). A value of zero would mean all
white, a value of one would mean all black, and values between them would
represent different shades of gray.

We consider only mixtures that have two components. Call the two
components of the mixture A and B. The local concentrations of A and B
are called @ and b, so at some point located at x, the composition is de-
scribed by a(x) and B{x). (The bold tvpe x denotes a vector quantity.) A
value of a(x) = 1 means that only A is present; a value of b(x) = | means
that only 8 is present. Obviously at every point we have

a(x) + b(x) = 1 (1)
so that either a(x) or &(x) tells us the composition of the mixture at point x.

The values of a(x) and b(x) averaged over all points in the mixture are
called @ and b. Clearly they must also follow the relationship

g+b=1 (2)
Unless the mixture is completely uniform a(x) is different from @ and
changes as x changes. The function a(x) completely describes the distribu-
tion of the components in a two-component mixture. From this function
we extract the statistics that describe the quality of mixing.

2.2 Intensity of Segregation and Texture

There are two different mechanisms of mixing in polymer processing: mo-
lecular diffusion and bulk deformation. We separate them because they
have very different effects on the mixture pattern. Bulk deformation
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changes the shapes of regions of the mixture with a given composition, but
it can only move the points around, never change their composition. For
example, consider a mixture consisting of round blobs of a black material
surrounded by a white material. Deformation can smear the blobs out into
streaks, make them into swirls, or change the pattern in many other ways,
but the pattern is always black and white, never gray. On the other hand,
molecular diffusion cannot change the shape of the blobs but instead pro-
duces gray wherever black meets white, Diffusion causes the gray areas to
grow with time until the entire mixture is a uniform gray.

Intensity af segregation is the property of a mixture that is affected by
molecular diffusion. It is determined by examining how the compaosition ai
each point differs from the average composition of the mixture. The vari-
ance in composition is a measure of how much concentration varies from
the mean and is defined by

= ({a(x) — @) (3)

Here the angle brackets denote an average over the entire mixture. If a{x)
equals @ at every point (i.e., the mixture is a uniform gray) then o’ equals
zero. If a(x) equals either one or zero everywhere (i.e., every point is either
black and white, never gray) then o’ equals @b. This is used to normalize
the variance, producing the intensity of segregation:

Ty

I = = (4)
A value of I equal to zero means no intensity (complete uniformity of
composition); a value of unity means maximum intensity (the mixture is
black and white with no gray).

Intensity of segregation 15 not important in many polymer processing
problems because the diffusivities of polymer melts are so small that no
significant diffusion occurs during mixing and I is always very close to
unity. When this is true, one can talk about a mixture with no diffusion.
Most of the subsequent discussion concerns mixtures with no diffusion
because they predominate in polymer processing.

Diffusion and changes in the intensity of segregation are important
whenever intimate contact between molecules is needed. A prime example
in polymer processing is reaction injection molding. Here two liquids must
be mixed on a molecular scale so that they can react and form a polymer.
In this case bulk deformation is used to create very small blobs or layers of
the two fluids so that diffusion can reduce the intensity of segregation very
quickly.

The qualities of a mixture that can be affected by bulk deformation
we call texrure. Texture includes anything one may say about the spatial
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Figure 3 Definition of striation thickness 5in a layered mixture.

arrangement of the components of the mixture. Is the mixture streaky,
clumpy, or swirled? Are the clumps all the same size or different sizes? How
big are they? Measurements of texture include interfacial area, striation
thickness, and scale of segregation. We now proceed to discuss measures of
texture. Intensity of segregation is the only quantity discussed in this chap-
ter that is nof a measure of texture.

2.3 Mixtures with No Diffusion: Interfacial Area and
Striation Thickness

In mixtures with negligible diffusion one can easily identify the two compo-
nents and the surfaces where they meet. Spencer and Wiley [1] were among
the first to recognize that better mixing in viscous Muids meant an increase
in the interfacial surface area, and this is still the quantity predicted by
many theories about mixing. For measurement purposes we use A,, the
interfacial surface area per unit volume. This is one of the few measures of
mixing that becomes larger as mixing becomes better: most of the other
measures become smaller as mixing improves.

A special case of a mixture with no diffusion is a layered or lamellar
mixture., This is an important case because laminar fluid flow tends to
produce layered mixtures [2,3]. Consequently, any mixture of immiscible
viscous fluids tends to have a layered structure. In such a case the striation
thickness 5 is 8 measure of the texture; 5 is defined as one-half the thickness
of the repeating unit, as shown in Figure 3. (Mote that some authors do not
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include the factor of one-half. Here we follow the notation of Ottino and
coworkers.)

For a layvered mixture the interfacial surface area and the striation thick-
ness are simply related:

Ay s (5)
5

Of course, A, can be measured for any mixture without diffusion, but 5 is
only defined for lamellar mixtures.

Interfacial surface area and striation thickness are useful because they
are easy to measure and easy to understand. However, they may be poor
indicators of the quality of mixing when there is a wide range of striation
thickness or particle size. For example, consider the mixtures shown in
Figures 2a and b. The two mixtures have identical striation thickness and
interfacial surface area. However, Figure 2a with its regular layers seems
much better mixed than Figure 2b, with many small lavers and a few large
layers. The small layers contribute significantly to the interfacial surface
area, but the large layers have more of an influence on the quality of
mixing. Both Strasser and Erwin [4] and Kolodziej et al. [5] found that real
mixtures have a wide distribution of striation thickness, so this is a very
real problem.

One way to handle this problem is to measure the distribution function
of stnation thickness. One might then talk of some percentage of the vol-
ume of the mixture having striations thicker than a certain value. This type
of result was presented by Kolodziej et al. [5] but has yet 1o be widely
used. Its measurement and calculation are as complicated as the statistical
measures discussed later, but it is not as general a description.

2.4 Clumpy Mixtures: Scale of Segregation

Another type of mixture that is often analyzed is the clumpy mixture. This
consists of clumps of the two components that are similar in shape, at least
in a statistical sense, but that have no regular arrangement or long-range
order. The type of pattern one would get by spattering drops of black paint
on a white wall is a good example of a clumpy mixture: the various drops
are somewhat similar to one another, but their placement on the wall is
random.

Clumpy textures can be characterized by the scale of segregation, which
15 @ measure of the size of the clumps. The concepts of scale of segregation
and intensity of segregation were originally proposed by Danckwerts [6] in
his definitive paper on the definition and measurement of mixing.

The precise definition of scale of segregation is statistical in nature. To
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arrive at it we must first consider the correlation function R(r). Recall that
the variance o} is a measure of how much the composition at a point differs
from the average composition [Eq. (3)]. The correlation function is closely
related, but instead of considering one point at a time it considers pairs of
points, choosing the points so that they are separated by a fixed distance r.
The definition is

R(r) = ([alx) — @] [a(x + r) — a]) (&)

Here again the angle brackets denote an average over the entire mixture,
that is, an average over all values of x, with r remaining fixed. By repeating
the calculation for each value of r one builds up the function R(r). When r
equals zero then a(x) equals a(x + r) and a comparison between Equations
{(6) and (3) shows that

R(0) = o] (7

This is used to normalize the correlation function, producing a frequently
used guantity called the correlation coefficient a(r):

plr) = =5 (8)
a

having the property that p(0} always equals unity. The graph of the correla-
tion coefficient is called a correlogram. The notation used here is thatris a
vector, but reported correlograms usually treat r as a scalar quantity. This
is strictly correct only if the mixture statistics are isotropic, but it is common
practice to ignore anisotropy in the mixture statistics. If this approach is
taken then p(r), where r is a scalar, should be an average of pir) over all
possible directions of r.

The correlation coefficient can be defined and measured for any mixture,
regardless of whether it is clumpy or not and whether significant diffusion
has occurred. To get a better idea of what the correlation coefficient means,
consider a mixture of components A and B with no diffusion. Imagine we
have a photograph of a section of this mixture and take a needle of length r
and drop it onto the photograph. (This process is called “dipole throwing.™)
Each end of the needle would land on a region of A with probability @ and
on a region of B with probability b. What about the combination of the
two ends? Both ends could land in A, or both ends in B, or one end in A
and one end in B. Call the probabilities of these events P,,, Pus, and P,y
respectively. The correlation coefficient is related to these probabilities [7]
by

plr) =

| o

a
PAJ""E“FH“PAJ [9}
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Figure 4 Correlogram for mixture with randomly arranged spherical clumps of
radius r,.
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Figure 5 Correlogram (averaged over all directions) for regular layered mixture
witha = 1/2.

or in the case of a 50 : 50 mixture,

p(r) = P(both ends the same) — P{both ends different) (10}
If the correlation coefficient at some value of r = 1, then points separated
by a distance r always have the same compeosition; if p{r) = —1 they are

always different. A value of p(r) equal to zero means that knowing the
composition at one point provides no information about the composition a
distance r away.

Sample correlograms are shown in Figures 4 and 5. Figure 4 is the corre-
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logram for a mixture made by randomly mixing uniform spheres of the
two components and then compacting the spheres until the space between
them is eliminated [8). The correlation coefficient always equals unity at
zero distance. It equals zero for r greater than the diameter of the spheres,
since the composition of adjacent spheres is uncorrelated. This is an exam-
ple of a clumpy mixture.

Figure 5 is the correlogram of a regular layered mixture with equal
proportions of A and B. A layered mixture is anisotropic, and Figure 5 is
the correlogram averaged over all directions. That every layer of A is next
to a layer of B shows up in the first region where the correlogram is nega-
tive. The regular alternating structure of the mixture shows as an oscillation
in the correlogram.

We can now rigorously define a clumpy mixture as one in which the
correlogram is nonnegative and equals zero for r greater than some value
(as in Figure 4). For clumpy mixtures we can define the linear scale of
segregation 5, as the area under the correlogram [6]

S = L plrydr (11)

This represents an average size of the clumps. Note that in a clumpy mixture
there is no difficulty with the infinite upper limit on the integral, since p{r)
equals zero above some value of r. Danckwerts also defined a volume scale
af segregation S, as

S =2 L plr)r dr (12)

This represents a measure of the volume of the clumps. The volume scale
of segregation is important in practice because it is casy to measure by
sample variance techniques (see Section 3.2). §, is of the order of (5,)°,
but the exact relationship between S, and 5, depends on the shape of the
correlogram.

Figure 6 illustrates the relationship between scale and intensity of segre-
gation. Note that the scale of segregation can decrease without changing
the intensity (as in laminar mixing of polymer melts). The intensity can
also decrease without changing the scale (molecular diffusion with no bulk
deformation). The two measures, scale and intensity, are complementary.

The scale of segregation is a more general measure of texture in mixtures
than interfacial surface area or striation thickness because it can be applied
even when significant diffusion has occurred. Its limitation is that it is not
strictly defined for mixtures with enough order to have either negative
values in the correlogram or correlations at long distances. Relatively few
correlograms have been measured for actual mixtures, but these invariably
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Intensity of Segregalon

Scale of Segregation

Figure 8 Examples of scale and intensity of segregation.

show some negative values and often show correlations at long distances
[9,10]. Scale of segregation is a measure of the small-scale texture of a
mixiure —the local clump size or graininess.

2.5 Correlation Function and Spectrum: Complete
Descriptions of Texture

Striation thickness, interfacial surface area, and scale of segregation are all
useful measures of texture in mixtures, but each tells only part of the story.
I5 there some quantity that describes mixing completely and from which all
other measures can be derived as special cases? This is not a question that
has received a great deal of attention in the mixing literature, but it seems
that the answer to the question is yes and that the quantity is the correlation
function [11]. This can be expressed concisely as a hypothesis:

The texture of a mixture is completely described by the statistics of the
concentration field up to the second order.

By concentration field we mean the function a(x). Nth order statistics are
quantities computed by considering N points at a time. The variance ¢’ is a
first-order statistic (one point at a time); the correlation function R{r) is a
second order statistic (two points at a time). There are, of course, higher
order statistics: three-point correlations, four-point correlations, and so on.
One may reasonably ask if these matter. The answer, at least for human
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visual perception of texture, is no. This has been shown by Julez [12] in a
fascinating series of experiments on visual perception. He found that hu-
mans distinguish between patterns with different second-order statistics al-
most without effort but could not see the differences between patterns that
differed only in higher-order statistics.

Another piece of evidence in favor of the correlation function as a com-
plete description of texture is that all the other measures of mixing we have
discussed can be calculated from it (or from the correlation coefficient,
which contains the same information). This is obviously the case for the
linear and volume scales of segregation, which are defined in terms of the
correlation coefficient [Egs. (11) and (12)]). It has also been shown [8,13]
that for mixtures with no diffusion the slope of the correlogram at zero
distance is related to the interfacial surface area:

dR

A‘_d(dr)“" (13)
Once the interfacial area per unit volume is known, one can find the stria-
tion thickness from Equation (5). Thus, all the measures of texture we have
discussed so far can be determined from the second-order statistics of a
mixture.

The correlation function may be complete, but it is often hard to inter-
pret. An alternative description of texture that contains exactly the same
formation is a spectral description, which we shall call the power spectrum.
This is defined as the Fourier transform of the correlation function (shown
here for an isotropic mixture):

P(n) = E__ R(r)e " dr (14)

Here i denotes ¥ = 1. Since R(r) is real and even, Equation (14) simplifies
to

Pin) =2 L R(r) cos 2=nr dr (15)

The variable # is called the wave number and has units of length™'. It plays
the same role in space-varying problems as frequency does in time-varying
problems. One may just as well calculate R(r) from Pi{n) by taking the
inverse transform:

R(r) = I; Pi(me™ dn (16)

The power spectrum has a number of interesting features. Setting r equal
to zero in Equation (16) shows that
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Figure T Two linear correlograms with different scales of segregation and the
corresponding power spectra.,

g; = I___P{H}Hn (17a)

That is, the area under the spectrum curve equals the total variance o,
P(n) shows how this variance is divided up among different wave numbers.
Setting n equal to zero in Equation (15) gives

POy =2 L R(r)dr = 2438, (17b)

That is, the value of the power spectrum at zero wave number is propor-
tional to the scale of segregation. This is true only for mixtures whose
corrclograms are always positive; negative values in the correlogram de-
crease the value of P(0), and strictly speaking the scale of segregation is not
defined in this case anyway.

The correlation function and the spectrum contain exactly the same in-
formation. However, the information is arranged in a different way.
Roughly speaking, the spectrum turns the correlogram inside out. Correla-
tions at short distances influence the spectrum at large wave numbers, and
correlations at long distances influence the spectrum at small wave num-
bers. This is demonstrated in Figure 7, which shows two different linear
correlograms and their power spectra. The mixture with correlations at
longer distances (solid line) has the larger value of P{0) and, hence, the
larger scale of segregation. The second mixture (dashed line) has a lower
scale of segregation. lts power spectrum has the same shape as the first
mixture, but the peaks all occur at higher wave numbers because the corre-
lations occur over shorter distances.

Two other mixture spectra are shown in Figure B. The solid line has an
oscillating correlation function, indicating some regularity to the structure
of the mixture. This shows clearly in the spectrum as a peak at wave number
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Figure 8 Correlograms and power spectra [or two mixtures.

equal to 2. The spectrum indicates the strength and length scale of the
repeating structure,

The dashed curves in Figure 8 illustrate a mixture with no repeating
structure but a long tail in the correlation function typical of elongated
clumps. This shows as a spectrum with its maximum at n equal to zero and
no large peaks at other wave numbers.

The spectrum shows how concentration fluctuations are divided up
among the various wave numbers, and it is not troubled by the regular
repeating structures often found in mixtures. It can be interpreted more
easily than a correlogram, and different mixtures are more easily compared
by comparing their spectra.

Another reason the spectrum is important is that it is the fastest way to
compute the correlation function. P(n) is also the power spectrum of the
concentration field a(x). To compute it directly from concentrations one
first defines c(x), the local deviation of the concentration from the average:

c(x) = alx) — a (18)
then takes the transform of ¢(x),
Q(n) = 5__ clx)e’ " 'dx (19)

{Xn) is a complex function, having real and imaginary parts at each wave
number. P(n) is the square magnitude of these numbers:

P(n) = Q(n)Q*(n) = |Q(n)|* (20)

where the asterisk denotes a complex conjugate. Equations (18) through
(20) and (16), together with fast Fourier transform techniques, provide the
quickest way to compute R(r) (see Sec. 3.3).
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2.6 When Is Mixing Good Enough?

Given that we can define (and presumably measure) mixing, when i5 mixing
good enough? For the single-valued indicators of mixing (interfacial area,
striation thickness, and scale of segregation), it seems reasonable to set a
critical value and say that any mixture better than the critical value is well
mixed. The choice of the critical value depends entirely on the problem at
hand. A complete chemical reaction in RIM is thought to require a striation
thickness in the range of 15 um [14]. If a uniform appearance is needed,
then a scale of segregation or a striation thickness near the wave length of
visible light {(about 0.5 pm) will certainly give a texture that cannot be
resolved under visible light. However, the experiments of Ng [15] suggest
that a mixture with striations around 5 pm thick appears uniform to the
naked eye. In other cases the physical or mechanical properties of the
mixture are important, and one must correlate test results with mixing
measurements (o establish a sensible limit.

Even a carefully determined single-guantity limit may not always work.
For instance, if the tests to establish the limits are done on mixtures with
uniform striation thickness, then a mixture with a wide distribution of
striation thickness may pass the mixing test but not produce the desired
properties. This is an example of the limitation of striation thickness as a
measure of mixing. All the single-valued measures have the same problem.

To use the complete descriptions of texture one may set a limit, for
example, on the strength of the spectral components in a certain range: “no
spectral components greater than P* for wave numbers less than n*." Any
mixture passing this test would have only small concentration fluctuations
for wave numbers up to a*. This type of statement implies that segregation
over distances smaller than about 1/n* is not important.

3. MEASUREMENT TECHNIQUES

In discussing techniques for measurement of mixing we are concerned with
Iwo issues: acquiring the data and deciding what it means. Interpreting the
data includes both relating the measurement to some fundamental descrip-
tion of texture and deciding how much confidence one can place in the
result.

3.1 Basic Measurements on Sections

A section is a planar slice through a mixture, and sections are often easy
to obtain in polymer mixtures. From the section one can obtain certain
measurements, but the section is only a two-dimensional slice of a three-
dimensional structure. The science of gaining three-dimensional informa-
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Flgure 9 Test system for stereologic analysis. The points for measuring P, are
indicated by small tick marks.

tion from two-dimensional sections is called sterecology. The reader is re-
ferred to Underwood [16] and Weibel [17] for comprehensive treatments of
stereology. For our purposes stereology provides a simple way of determin-
ing interfacial surface area in a mixture with no diffusion.

Stereologists have determined that the most efficient way to obtain data
is by a systematic counting of points and line intersections. Having first
obtained several sections, for example by slicing the mixture and examining
the slices in a microscope, one then chooses a test system like that shown in
Figure 9. The test system is a regular geometric pattern of lines and points.
One may have test systems on transparencies and simply lay them over
photographs of the section. One then counts the quantities of interest, in
our case the number of points of the test system lalling on component A of
the mixture, and the number of times the test system lines intersect an
interface between components .4 and B. Repeating the procedure on many
sections produces two stereological parameters: P,, the fraction of points
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that fall on component A, and [, the number of intersections per unmit
length of test lines.

The fraction of test points P, is a direct measure of the overall composi-
tion of the mixture:

a=Pr, (21)

Of course this equation applies only when there has been no significant
diffusion.

The number of intersections per unit line length can be used to determine
interfacial surface area. The exact relationship depends on the nature of
the structure and on how the sampling was done. The best sampling proce-
dure is to take isotropic sections. This means that many different sections
with different spatial orientations are examined, so that all directions are
equally represented. In this case the interfacial area per unit volume is

A, =21, {22)

Equation (22) also applies for any type of sectioning when the mixture itself
i5 isotropic; this case is extremely rare in practice, however.

Another possibility is that the structure of the mixture is lamellar and
has all its interfaces aligned in the same direction. It has already beéen
pointed out that this is always the case, at least over small distances, for
the laminar mixing of viscous fluids. If all the sections have the same
orientation relative to the layers and if o is the angle between the vector
normal to the section plane and the vector normal to the plane of the
interfaces, then the interfacial area is

4. G sin 1, (23)

The proper choice of a test system is important if results are to be
accurate. Many different test sysitems may be used. The test system in
Figure @ is recommended for applications in which anisotropy may be pres-
ent [17], as is often the case in mixing. The size of the test system must also
be chosen properly in relation to the sections being examined. The point
spacing d as shown in Figure 9 should be chosen so that d° is greater than
the area of the largest single contiguous area on the section (i.e., the largest
particle). For lamellar mixtures d should be larger than the largest striation.
A set of test systems of different sizes is usually needed for treating differ-
Enl mixiures,

Another important principle of stercology is that it is better to add
together small amounts of information from a large number of sections
than to collect a large amount of information from a small number of
sections, This minimizes the chance of distorted results from a nonrepresen-
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tative section. The number of sections that must be examined depends on
the accuracy required of the measurement. If one is determining interfacial
surface area, then the total length of the lines on the test system J; required
to determine .4, with a of variance o, is [17].

44
Ly = :;—' (24)

Aw

The Ly given here is the length in real space; when examining micro-
graphs one must account for the magnification factor.

Example

A mixture known to have A, roughly equal to 10 mm ™' is sectioned and
examined at 60 magnification. The test system covers an area of 120 x
120 mm on the magnified image. What point spacing should the test sysiem
have, and how many sections should be examined to measure A, with a
standard deviation of £5%7

Solution

The test system size d should be larger than the layers encountered on the
sections. This requires 4 to be larger than 1/4, = 0.1 mm. A value of d of
20 mm on the magnified image, or 0.33 mm in real space, should be suit-
able. This gives the test system 36 points (as in Fig. 9) and a total line
length per section of 1.131 m on the magnified image, or 18.85 mm in real
space.

To get 5% accuracy we need

" 4
T (0,054, ~ (10 mm—")(0.05)’

which is easily provided by using nine sections per measurement.,

= 160 mm

3.2 Sample Variance Measurements

A second general category of mixing measurement technigue is the sample
variance measurement. Here a number of small samples from the mixture
are examined, and the overall composition of each sample is determined.
The variance among these data is an indication of mixing.

If the compositions of the samples are denoted by C, then the experimen-
tal average composition is

T=-Xc 2s)

and the experimental variance is
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The average composition C is a measure of the overall composition of the
mixture @ The variance 5° is a measure of the actual variance of, which is
related to the quality of mixing. This is in keeping with the general notion
that mixing increases the homogeneity of the mixture. If the mixture is
more homogeneous, then all the samples have a composition closer to C
and the variance is small. A perfect mixture would have o equal to zero. o
has a maximum possible value of o, the variance among all points in the
mixture [Eq. (3)].

There are many ways to obtain the data for sample variance measure-
ments. Some workers have extracted the samples from the mixture with a
hypodermic needle (for low-viscosity liquids) [18]; others have pumped the
mixture through special cells that contain a number of sampling points
[19,20]. Still others have examined sections of the solidified mixture [9,21].
For a continuous process one may also allow the mixture to flow through a
measurement cell with a single sampling zone and take a series of measure-
ments over a period of time.

Actual concentration measurements are made by any technigue that is
convenient for the mixture at hand. In research settings one can often dope
the components of the mixture to make this as easy as possible. Technigues
that have been used to measure composition include light transmittance
[18,19], electrical conductivity [20], titration [22), and particle counting (in
powder mixtures). A technique for mixtures of carbon black in rubber
involves producing a cut surface in a reproducible way and examining the
surface with dark-field microscopy [23]. The carbon black particles create
roughness on the surface, which shows as a bright area in the dark-field
microscope, so the intensity of light is related to the concentration of car-
bon black.

Any one of these techniques, or any other that measures concentration,
is suitable for sample variance measurements. Sample variance techniques
work best when a large number of measurements can be taken easily and
when the individual concentration measurements are very accurate.

It 15 easy to make relative interpretations of sample variance measure-
ments: if the sample size and shape are fixed, then a smaller variance always
means better mixing. It is more difficult to compare two measurements
done with differently sized or shaped samples or to relate the sample vari-
ance to a more fundamental description of mixing. This is because sample
variance depends on the size and shape of the samples as well as on the
texture of the mixture. The details of this dependence have been worked
out [8,24], and it has been shown that the sample variance is given by
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where ¥ is the volume of an individual sample. The function W{r) depends
on the size and shape of the sample and is called the sample shape function.
This is found by first defining a function W™(x, r). For a sphere of radius r
centered on position x, W™(x, r) is the fraction of the surface area of the
sphere that lies inside the sample. The sample shape function is the integral
of this function,

Wir) = %. -Er W™ (x, r) dv (28)

where the integration is carried out over the volume of the sample and each
volume increment dv is located at the point defined by x.

A few sample shape functions have simple analytic expressions. These
include a spherical sample of radius r,,

1 = E + i 0 2r
Wir) =[ T ar, " 16r) Ll (29)
0 r> 2,

and a highly elongated “line"” sample with length L and cross-sectional area
A (4" = L],

M"' (_ll L i) A 12 L
Wi(r) = [4::-‘ L A)" ¢ rs (30)
0 r>L

Shape functions for other sample geometries can be computed numerically
[8].

Equation (27) reduces to useful simple forms for samples that are very
large compared to the scale of segregation. If the samples are compact in
shape (spheres, cubes, and so on) then sample variance is a direct measure
of the volume scale of segregation S, [Eqg. (12)] [6):

% . 25
%~ (31)

If instead the samples are highly elongated line samples, then sample vari-
ance measures the linear scale of segregation S, [Eq. (11)]:

(32)
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Figure 10 Effect of sample size and shape on sample variance measurements.
Samples of length L and a square cross section. Numbers indicate the ratio of length
1o width.

Equation (31) is valid if V' » §,, and Equation (32) is valid if L » §;. In
either ‘case one must usually assume that diffusion has been negligible, so
that &> = @b. In practice one must have an a priori estimate of the scale of
segregation to choose a sample size. This can easily be obtained from a
preliminary measurement.

Another way to interpret sample variance measurements is 1o assume a
mathematical form for the shape of the correlogram with one or more
undetermined scaling factors. For example, the mixer may be known to
produce mixtures with spherical clumps, in which case the correlogram
shape of Figure 4 is appropriate and r, 15 the only unknown parameter.
Equation (27) then allows one or more measurements of sample variance 1o
be used to set the scaling factor (in this case the radius of the clumps). The
quality of results obtained this way depends heavily on the choice of a
suitable correlogram shape, and the approach is not recommended unless
there is strong evidence in favor of the correlogram form used.

Figure 10 demonstrates how sample size and shape affect sample vari-
ance. The curves are for samples with a square cross section and length L,
with the cross section varied from L* (a cubic sample) to zero (a perfect line
sample). Very small samples are seen to act as point samples (o equals o)
no matter what their shape. Large samples follow the asymptotes suggested
by Equations (31) and (32).
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Table 1 Confidence Limits on Sample Variance Measurements *

Conflidence Level
Mumber of 0% Q5% 98 %, Q9%

Samples, N Ce e Cr Ca G Cy G .
5 0.42 5.63 0.36 8.26 0,30 13,47 0,27  19.32
10 0.53  2.70 0.47 3.33 .41 4.31 0.318 5.20
20 0.6% 1.B8 0.58 2.13 0.52 2.49 0.49 2.78
50 0.74 1.45 070 1.55 (.65 1.70 0.63 1.EO
100 0.80 1.29 0.77 1.35 0.74 1.43 0.71 1.49

*The confidence level is the probability that the actual variance falls between 5" and C_5°.

The accuracy of experimental measurements of sample variance is con-
trolled by the number of samples used. As more samples are used to com-
pute 5%, the confidence one can have in the measured value increases. This
is stated in the form of a confidence limit. That is, one names two values
and the probability that the true value falls between them. The confidence
limits on sample variance are given by (e.g., Ref. 25)

{——ﬂf =08 @ < '[-—”,' ns (33)

AN =10 =ar2 X = 1ar2

where x* _ is the chi-square cumulative distribution function for » degrees
of freedom and having area « to the left of ¥*, Nis the number of samples,
and o is the confidence value (e.g., 0.90 for a 9%0% confidence limit). Table
| gives examples of the confidence limits that may be placed on sample
variance data. For a small number of samples the confidence limits can
be quite far apart, and one should bear this in mind when interpreting
experimental data.

The resolution of sample variance measurements is limited by the preci-
sion of the technique used to measure sample compositions. Any measure-
ment has some inherent variation, so the measured variance S° never equals
zero, no matter how good the mixing. Instead, some part of the measured
variance is caused by the measurement technique, and any variance due to
poor mixing that is smaller than this value cannot be detected. This effect
is illustrated in Figure 11, which compares the sample variance predicted
by Equation (27) and the actual value measured as mixing improves. This
limiting value of variance can easily be determined by taking a series of
measurements on very thoroughly mixed samples, and this should always
be done before using a new measurement technigue. Failure to do this can
mean disaster if changes in mixing quality are not reflected by the measured
values.
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Figure 11 Effect of finite measurement accuracy on measured sample variance
{solid line) versus the value predicted by Equation (27) (dashed line).

3.3 Image Analysis

Image analysis is the automated form of stereology. One still acquires sec-
tions of the mixture to analyze, but the analysis is done by computer. The
steps in the procedure are: obtain a section, acquire a digital image of the
section, and analyze the image. As the first step is the same as any other
stereological technigue, only the second and third steps are discussed here,

Acqguiring Digital Images

A digital image is a way of storing pictorial information in a computer.
The picture is divided up into a large number of small areas, called pixels.
Normally these are arranged in a rectangular array. For each pixel the
intensity of light is measured and recorded. (In color systems one may
record red, green, and blue intensities.) The actual digital image is then a
large array of numbers representing the light intensity at each of the pixels.
Typical image analysis systems have 512 = 512 or 1024 x 1024 pixels and
256 gray levels (i.e., the light intensity is represented by an integer ranging
from 0, for the lowest intensity, to 255, for the highest intensity).

The most common way to acquire a digital image is with a television
camera. For a mixing analysis one may attach the camera directly 1o a
microscope to give the necessary magniflication. The camera signal is then
passed to a device known as a video digitizer or a frame grabber. This
electronic hardware translates the analog camera signal into digital intensity
values and stores them in random-access memory. The digitizing equipment
may be part of a small computer, in which case the image can be stored
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directly in computer memaory, or it can be a stand-alone device, in which
case the image is passed to a computer over an interface.

An alternative to the video camera is laser line scanning, developed by
Strasser and Erwin [4]. In this technique a low-power optical laser beam is
focused on the surface of the section and the intensity of the reflected light
is measured by a photodiode. By scanning the beam over the section and
taking periodic intensity readings of the reflected light, one builds up a
digital image of the section. The stated advantages are elimination of the
need for uniform lighting and higher resolution than is available from a
camera. The disadvantage is that more time is required to acquire each
image —several minutes is typical. In contrast, a frame grabber acquires an
image in approximately 0.03 s (although the analysis usually takes much
longer).

To analyze the mixture one must relate the intensity at each pixel to the
composition of the mixture at that point. This is easily done when different
colors are being mixed together. If the intensity is not directly proportional
to the concentration, then a calibration curve can be set up and the digital
intensities transformed into compositions by a short computer program.

It is more difficult to deal with situations in which one cannot see the
difference between the components of the mixture. This situation has not
been reported in the literature, but one might try staining one of the compo-
nents. Another possibility would be to use the x-ray microprobe capability
present in some scanning electron microscopes. These instruments use x-ray
fluorescence to detect the presence of a selected element and can display on
the cathode-ray tube (CRT) an image showing where that element is present
in the sample (e.g., see Ref. 15). Presumably one could pass the micro-
scope’s CRT signal directly to the video digitizer and eliminate the camera
altogether.

Analysis of the Image

One now has a digital image stored in a computer, and the intensities are
proportional to the compositions at each pixel. This may be on a continu-
ous scale, or one may choose to ignore any diffusion that had taken place
and make each pixel either all dark or all light. This latter operation is
known as rthresholding. An intermediate gray level is chosen and each pixel
compared to it: those that are darker are set to black, and those that are
lighter are set to white.

The most general treatment of this image for mixing analysis is to com-
pute the spectrum P(n) [Eq. (15)]. This is done using a fast Fourier trans-
form (FFT) algorithm and the route described in Equations (18) through
(20). The FFT is simply a very efficient method for computing the discrete
Fourier transform (DFT). Under suitable conditions the DFT is an approxi-
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mation 1o the continuous Fourier transform used in Equations (14), (16),
and (19) (see, for example, Ref. 26). The DFT is calculated from sampling
the desired function, say ¢(x), at points separated by an interval X. If N
points are sampled then the discrete transform is given by

M1
Q(NLX) = 2, clkX)e ™™ for £=0,1,2,...,N—1 (34)
=0

Equation (34) is a DFT for a one-dimensional function. For image analysis,
intensity values in the digital image are the sampled points of the function
¢(x), but the data are a two-dimensional array. A two-dimensional DFT 1s
done by performing an FFT on each row of the array, placing the resulls in
a new array, and performing an FFT on each column of that array. The
power spectrum (again, two-dimensional) is computed by multiplying the
transform at each point by its complex conjugate [Eq. (20)]. The correlation
function can then be computed by taking the inverse transform of the
power spectrum (again with FFT methods). For a sizable number of points
this is the fastest way to compute the correlation function. For N points the
use of Equation (6) requires N° operations and the use of the FFT reguires
N (log; N + 1) operations. For example, il & equals 1024, then the FFT
route 15 100 times faster. If there are more points the savings are larger.

Al this point one has complete information about the mixture in the
image, with two limitations. First, there is no information about correla-
tions over distances greater than the width or height of the image. Second,
information about correlations over distances shorter than the spacing be-
tween pixels is either lost or, more dangerous, may be reflected as false
information in the spectrum and correlogram. The latter is the well-known
“aliasing™ effect in which spectral components at wave numbers higher than
1/X appear in the spectrum at lower frequencies (e.g., see Ref. 26). Aliasing
15 an inherent feature of sampled data systems. Some image acquisition
equipment may alleviate the problem, if each pixel is not a point sample of
the image but an average over an area nearly the size of the pixel spacing.
At present there is not enough experience with image analysis in mixing to
say how important the aliasing problem is.

Although either the power spectrum or the correlation function contains
complete information about the texture of the mixture, it may be desirable
1o compute other quantities, such as the scale of segregation or interfacial
surface area, using the equations presented in Section 2.

Commercial image analyvzers are available. These machines are packages
of hardware (video camera, digitizer, and computer) and software for ana-
Iyzing images. Typical capabilities include counting the volume fraction of
cach phase and counting the number and sizes of particles. The latter may
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be very useful for dealing with the dispersion of particulates in a polymer.
Commercial systems also measure other stereological parameters, including
I;, so that interfacial surface area can be computed. Some commercial
image analysis packages not only include hardware and software but also
allow the user to write his or her own routines for image analysis [27]. This
is one way that the concepts discussed here could be realized in practice.

Image analysis gleans much more information from a single section than
stereological point-counting methods. However, this does not produce
more accurate results if only one or two sections are used. One must still
examine a sufficient number of sections to have representative data and, in
the case of measuring [, to cover a range of section orientations. The real
advantage of image analysis is that the analysis is done automatically so
that many sections can be analyzed with minimum labor.

4 SUMMARY

In any practical problem one must choose both a measure of mixing and a
measurement technique. The two choices are not independent: stereological
techniques measure the interfacial area or the striation thickness; sample
variance techniques measure the scale of segregation; image analysis mea-
sures the concentration spectrum. Each measurement technigque may be
more or less difficult to apply to a given mixture; each measure of mixing
may be more or less appropriate to the situation. As usual, the engineers
are left to use their own good judgment. In making the choice, one should
remember the limitations and pitfalls presented here.

NOMENCLATURE

a, g Concentrations of components 4 and 8 at a point in the mixture

a,b Averages of @ and b over the entire mixture

A, Area of the cross section of an elongated sampling volume

A, Interfacial area per unit volume

[ Deviation of @ from its average value

G Average value of ¢ for a sample extracted from the mixture

C Average value of C, over all the samples

d Distance between measurement points on a test section

I Intensity of segregation [Eq. (4)]

I Number of intersections (between test lines and interfaces) per
unit length of test lines in a stereological measurement

L Length of elongated sampling volume

Ly Total length of test lines for a set of stereological measurements

n Wave number, the independent variable for the power spectrum
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N MNumber of samples
Pin} Power spectrum of concentration field [Eq. (14)]
P Fraction of the points (on a set of stereological test sections) that
fall on component A
) Fourier transform of the concentration field o(x)
r Distance between pairs of points used to evaluate the correlation
function R(r)
r, Radius of spherical sampling volume
R(r) Correlation function for concentration field [Eq. (6)]
5 Striation thickness (Fig. 3)
s Experimentally measured variance in concentrations C, among a
number of volume samples [Eq. (26)]
3 Linear scale of segregation [Eq. (11)]
Sy Volume scale of segregation [Eq. (12)]
v Volume of sample for sample variance measurements
Wir) Sample shape function [Eq. (28)]
X Position vector
X Spacing between sampling points for discrete Fourier transform
a(r) Correlation function [Eq. (8)]
a Variance in concentration among all points in a mixture [Eq. (3)]
a;, Varnance in measurement of 4,
o Variance in composition among volume samples extracted from a
mixture
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