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ABSTRACT: The goal of this work was to provide a usable framework for describing the molecular
structure of long-chain branched, metallocene-catalyzed polyethylene (mPE). This will allow better
understanding of structure-property relations for these materials and in the future allow the development
of new metallocene based systems with tailor-made properties. In particular, we are interested in the
relationship between molecular structure and rheological behavior of polyethylene and therefore represent
the structure in terms that are relevant to the rheological properties. To provide an intuitive understanding
of the structure, we present a ternary diagram showing clearly the independent variables in the system
and allowing a quick analysis of blended systems.

Introduction
One of the greatest challenges in the development of

structure-property relations for polymeric materials
lies in the meaningful characterization of molecular
structure. Various analytical measures are available for
different aspects of polymer molecular structure, and
it is necessary to bring this information together in an
appropriate way. The analytical measures of course all
have certain limitations, and none of them provide the
whole story in a single parameter or even in a single
distribution.

This is particularly true in the case of long chain
branched polymers. To fully characterize the molecular
structure of long chain branched polymers one must
have information about the molecular weight distribu-
tion of the whole polymer, the branch point density, and
the branching structure. One can obtain a reasonable
estimate of the molecular weight distribution using
appropriate size exclusion chromatography techniques
and of the branch point density using 13C nuclear
magnetic resonance. It is in the third item that the most
difficulty arises, as we do not have a direct measure of
branching structure. Instead, we must make use of
information about the polymerization reaction mecha-
nism to determine the branching structure, and we must
also represent that structure in a useful way.

In this work, we present a protocol for representing
the branching architecture of metallocene-catalyzed long
chain branched polyethylene. We make use of Monte
Carlo simulations to generate sets of molecules with the
same statistical properties as the real materials. We
then analyze the simulated chains and develop analyti-
cal relationships for all of branching statistics in terms
of two experimentally measurable average molecular
parameters, weight-average molecular weight and aver-
age branch point density. We present the general
bivariate distributions for these systems as well as all

of the necessary equations for the specific aspects of the
molecular structure. We propose a new way of illustrat-
ing the topology of metallocene polyethylene, and finally,
we present guidelines for applying this analysis to
blended systems.

Review of Recent Studies of Branching
Structure in Metallocene Polyethylene

Soares and Hamielec1 were the first to describe the
kinetics of polymerization of long chain branched mPE
by taking into account the four following steps:

where M denotes a monomer, P a living polymer with
catalyst attached at one end, D+ a saturated dead chain,
Dd a vinyl-terminated dead chain that can be grafted
as a branch, and CTA a chain transfer agent. Their
analysis of the reaction kinetics shows that dead chains,
branches, and living polymers all have identical MWDs
and that the fractions of each type of chain depends on
the rate constants. They also found that all segments
respond to Flory statistics, with a polydispersity index
of 2. It also provides the distribution of molecular
weights and branch points. This analytical solution
agrees very well with a Monte Carlo simulation using
two probabilities, one for propagation and one for
branching. They also predict the LCB per 103 C and the
branching frequency, Bh N, which is the average number
of branches per molecule.

Beigzadeh et al.2 extended the use of Monte Carlo
simulations and showed the importance of comblike and
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dendritic molecules at the high molecular weight end
of the distribution. They suggested that these structures
could strongly influence the rheological properties of
these materials.

Another analysis of single-site-catalyzed polymeriza-
tion was presented by Yiannoulakis et al.3 Their kinetic
equations are slightly different from the ones of Soares
and Hamielec1 and are solved for each subset of mol-
ecules with different number of branch points per chain.
The statistics of the whole system is then obtained by
summing the weighted population using a Schultz-
Flory distribution, which leads to results identical to
those of ref 1.

Read and McLeish4 revisited the approach of Soares
and Hamielec1 and introduced a new formalism for
computing the molecular statistics from the same
kinetic equations. Their conclusions and results con-
cerning the distributions of molecular weight and
branch points are identical to those of Soares and
Hamielec.1 Read and McLeish4 also show that in addi-
tion to the number-average molecular weight of the
strands, which is the same for linear chains and all
segments of branched molecules, one single branching
parameter is necessary to characterize all the properties
of the branched system. This parameter, bU, the up-
stream branching probability, is related closely to the
Bh N of Soares and Hamielec. Read and McLeish also use
seniority to classify segments between branch points,
according to their distance from a free end, and priority,
which is related to the number of paths leading to a free
end. They then make use of the resulting seniority and
priority distributions to predict the rheology of these
branched mPE systems.

Monte Carlo Based Evaluation of Branch
Structure

Beigzadeh et al.2 proposed a technique for predicting
detailed branching structure of metallocene polyethyl-
ene using Monte Carlo simulations. In these simula-
tions, molecules are built up monomer by monomer until
there are enough molecules present such that the
distributions of structures in the system are representa-
tive. The molecules are built according to three assump-
tions:

1. The molecular weight distribution of a purely linear
polymer can be represented by the most probable (or
Flory) distribution (eq 1).

where p is the extent of reaction. For p = 1, this
distribution has a polydispersity index, MW/MN of 2, and
has previously been shown to provide a good represen-
tation of the molecular weight distribution of linear
metallocene polyethylene.

2. The long chain branches are formed by the incor-
poration of macromonomers as described by Soares and
Hamielec.1

According to the currently accepted reaction mecha-
nism, any of the molecules in the reaction medium can
become macromonomers. In our simulations, we con-
sider all of the previously generated molecules to be
potential macromonomers. This approach becomes more
representative of reality as the number of simulated
molecules increases.

3. The incorporation of a branch in a particular
position does not affect the probability of a branch being
incorporated in adjacent positions.

In reality, the presence of a long chain branch does
reduce the likelihood of another long chain branch being
placed in the next position due to steric hindrances.
However, at the low level of branching in the materials
we are studying, this reduction in probability does not
have a significant effect on the Monte Carlo simulations.

Figure 1 shows the Monte Carlo algorithm that we
used for single-catalyst systems, which is based on two
probabilities: (1) pp, the propagation probability and
(2) lp, the monomer selection probability. We derive the
exact relations between molecular weight averages and
branch point density and the two probabilities in a later
section. From the four kinetic equations above, we can
define the following reaction rates using the results of
Soares and Hamielec:1 rate of monomer addition, RM;
rate of macromonomer addition, RLCB; and the rate of
termination, RT, which is equal to RCTA + Râ . We can
relate these reaction rates to the Monte Carlo prob-
abilities by recalling that the termination probability
is (1 - pp) and the absolute probabilities of adding a
monomer or a branch are (pp × lp) and pp × (1 - lp)
respectively, which can be related to the rates above
after setting R ) RM + RLCB + RT. Then RT ) R × (1 -
pp), RM ) R × pp × lp and RLCB ) R × pp × (1 - lp).
Thus, we derive simply pp ) (RM + RLCB)/R and lp )
RM/(RM + RLCB).

We performed Monte Carlo simulations over broad
ranges of propagation and monomer selection prob-
abilities in order to fully explore the range of structures
that can be produced with these catalysts. For each
probability combination, approximately 400 000 chains
were generated. When building a chain, the lengths of
segments of the main backbone were recorded to permit
determination of MWD of segments. At the termination
of each chain, its total length and number of branch
points were recorded, so that if the chain is grafted as
a macromonomer, the weight and number of branch
points of the new molecule can be computed. The results
of the simulations were used to guide and confirm our
analytical derivations for the branching statistics and
molecular weight distributions. Detailed information on
molecules with less than five branch points was also
recorded to check the bivariate distributions.

w(M) ) M
M0

2
(1 - p)2pM/M0-1 (1)

Figure 1. Algorithm for Monte Carlo simulations.
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Rheologically Relevant Representation of
Branching Structure

The Monte Carlo simulations showed that long chain
branched metallocene polyethylenes are mixtures of
linear chains and various branched molecules. The
linear molecules have a polydispersity index of ap-
proximately 2 and the polydispersity index of the
molecules with n branch points is given by eq 2.

While these results are interesting, they are not par-
ticularly useful for understanding the rheological prop-
erties of branched mPE. As pointed out by Read and
McLeish,4 in terms of rheological properties, the differ-
ent types of segments present in branched mPE are
much more important than the different types of
molecules (Figure 2). For example, free arms (segments
with one free end and one branch point at the other)
all relax in the same way, regardless of the total number
of branch points on the rest of the molecule. We
therefore focus on the various segments in long chain
branched mPE.

The first task was to identify the important different
kinds of segments in long chain branched metallocene
polyethylene. For our analysis we chose to consider
three types of segments: linear chains, free arms (one
free end and one end at a branch point), and inner
segments (both ends at branch points). These types of
segments each exhibit different relaxation processes:
the linear chains reptate, the free arms retract, and
finally the inner segments relax by hindered reptation.
This approach is a simplification as not all of the inner
segments behave in the same way. In reality, it is the
seniority of an inner segment that determines how and
when it relaxes stress (in the linear regime). Because
of the greatly simplified analysis, we consider long chain
branched mPE to be a ternary system of linear chains,
free arms, and inner segments.

Our simulations showed that the distributions of
molecular weights of these different segments follow the
same Flory distribution (Figure 3). This means that the
relevant average molecular weight for long chain
branched mPE is the number-average segment molec-
ular weight, MN,S.

A particularly useful way of representing the topology
of long chain branched mPE is in a ternary diagram as
in Figure 4. The points were generated by performing

10 different simulations; the first five with constant
propagation probability and varying monomer selection
probability and the second five with constant monomer
selection probability and varying propagation prob-
ability (Table 1). The axes of the ternary diagram are
in terms of fraction of segments; for example the lower
axis gives the fraction of the segments that are linear
chains. Since all types of segments have the same MWD,
the composition of the overall system in terms of mass
fractions of segments is equal to the composition in
terms of number fractions of segments.

The final necessary component to this representation
is the parameter that determines the position of a
material on the ternary diagram. A convenient choice
for this parameter is the average number of branches
per molecule, â

In this equation, MN is the number-average molecular
weight of the whole polymer and λ is the average branch
point density per 103 C (as measured by 13C NMR). â
varies from 0 for linear systems to ∞, which is similar
to a percolation threshold (see Appendix D for more
discussion on this issue). We note that this definition
of â corresponds to a branching density, λ, equal to the
total number of branch points divided by the number-

Figure 2. Different types of segments in LCB mPE.

MW(n)

MN(n)
)

2(n + 1)
2n + 1

(2)

Figure 3. Distribution of molecular weights for linear mol-
ecules, free arms, and inner segments (106 molecules, pp )
0.999244, lp ) 0.9999).

Figure 4. Ternary diagram representation of topology of LCB
mPE. Ten simulated samples are represented: five for differ-
ent lp keeping pp constant (filled dots) and five for different
pp and constant lp (open dots).

â ≡ MNλ

14 × 103
(3)
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average molecular weight rather than MW as is some-
times done in experimental studies. This choice will be
justified in the next sections.

Analytical Relationships for Average Molecular
Weights

In the case of linear metallocene polyethylene, the
probability of adding a monomer at any time is equal
to the probability of propagation, pp since the monomer
selection probability is 1. The probability of obtaining
a chain with x monomers, n(x), is equal to the prob-
ability of adding x - 1 monomers to a monomer before
terminating. This leads to the classical Flory distribu-
tion

with the following average molecular weights

and a polydispersity index equal to

A similar analysis can be applied to branched met-
allocene polyethylene. In this case, the probability of
adding a monomer is the product of pp and lp and the
probability of adding a macromonomer is pp(1 - lp).
Then the number probability of obtaining a segment of
x monomers is given by eq 8, the weight probability by
eq 9 and the number and weight-average segment

molecular weights are given by parts a and b of eq 10.

This means that the segments between branch points
obey a Flory type distribution, as shown in Figure 3.

Modification of Monte Carlo Algorithm

This observation that all of the segments follow the
same MWD suggests a method for significantly acceler-
ating the simulation. Instead of adding monomer by
monomer, one can add segments following the distribu-
tion described by eq 8. Random segments following this
distribution can be generated by using the cumulative
form of eq 8:

First we choose a random number, r, between 0 and
1, and then the length of the segment, x, corresponding
to r is such that

as the probability that r falls in this interval is CNS(x)
- CNS(x - 1) ) nS(x). Therefore, the value of x is given
by

The next step is to define the Flory5 branching
probability Pb which is given by the ratio of the prob-
ability that a segment will end at a branch point,

Table 1. Results from Monte Carlo Simulationsa

no. pp lp â φL φA φB

1 0.999176 0.999840 0.243 0.566 0.381 0.052
2 0.999176 0.999780 0.367 0.457 0.454 0.089
3 0.999176 0.999600 0.953 0.232 0.554 0.214
4 0.999176 0.999400 2.688 0.091 0.554 0.356
5 0.999176 0.999200 11.918 0.034 0.530 0.436
6 0.999000 0.999700 0.433 0.414 0.479 0.107
7 0.999176 0.999700 0.577 0.342 0.515 0.143
8 0.999300 0.999700 0.756 0.280 0.539 0.181
9 0.999500 0.999700 1.469 0.155 0.563 0.282

10 0.999600 0.999700 2.719 0.081 0.550 0.369
a Note: For high values of â, the simulation does not represent well the real system because only the molecules with less than 1000

branch points are counted. The values for â and φi presented in this table are obtained by analyzing the simulated chains using eq 3 for
â. These results are in accord with the analytical solution with the exception of no. 5 where there are up to 6000 branch points on some
molecules and the total number of molecules in the simulation was not sufficient for accurate statistics.

n(x) ) ppx-1(1 - pp) (4)

MN ) 28∑
x)1

∞

xn(x) )
28

1 - pp
(5)

MW ) 28

∑
x)1

∞

x2n(x)

∑
x)1

∞

xn(x)

) 28(1 + pp

1 - pp) (6)

PDI )
MW

MN
) 1 + pp ≈ 2 (7)

nS(x) ) (pp × lp)x-1(1 - pp × lp) (8)

wS(x) ) x(pp × lp)x-1(1 - pp × lp)2 (9)

MN,S ) 28∑
x)1

∞

xnS(x) )
28

1 - pp × lp
(10a)

MW,S ) 28

∑
x)1

∞

x2nS(x)

∑
x)1

∞

xnS(x)

) 28(1 + pp × lp

1 - pp × lp) (10b)

CNS(x) ) ∑
y)1

x

nS(y) ) 1 - (pp × lp)x (11)

CNS(x - 1) < r e CNS(x) (12)

x ) int( log (1 - r)
log (pp × lp)) + 1 (13)
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pp(1 - lp) and the total probability that a segment will
end, (1 - pp × lp).

We note that this probability is identical to the bU of
Read and McLeish.4

Then we pick a second random number R between 0
and 1, and if R < Pb, we incorporate a macromonomer
or otherwise the chain terminates. The resulting set of
molecules is statistically identical to the classical Monte
Carlo, leading to identical branch point and weight
distributions. This modified algorithm gives much faster
computations and makes possible the simulation of 10
million molecules in 2 min on a Pentium III-300 MHz,
instead of 30 min to 1 h for the classical Monte Carlo.
Moreover, the computation time is independent of the
average segment length, which is not true for the
original method.

Branching Statistics

The next step is to derive analytical relations for the
branching statistics in terms of the two average molec-
ular parameters for which we believe that we have the
most accurate measurements: MW (light scattering) and
λ (from NMR). At this point it is useful to take another
look at our parameter â, which we are using to describe
the branching level of metallocene polyethylene. We now
demonstrate that eq 3 is the appropriate definition for
the average number of braches per molecule.

We start by writing â as the first moment of the
distribution of branch points throughout the molecules:

FN(n), the number fraction of chains with n branch
points, can be related to the branching probability Pb
by considering the number of different ways a molecule
with n branch points can be constructed in this system.
The function that describes the number of different
possibilities for each n is the Catalan number, C(n)

which was already obtained by Flory6 in the case of
random gelation of linear chains. The reason for this
similarity is explained in Appendix A.

Next we express FN(n) in terms of the Flory5 branch-
ing probability (the probability that a particular seg-
ment ends in a branch point), Pb.

This result can be understood4 by recalling that when
building a molecule with n branch points, starting at a
free end, there will be n segments that end at a branch
point with probability Pb and (n + 1) free arms that end
by termination, each with a probability 1 - Pb.

Now we can derive the equation for â in terms of the
Monte Carlo probabilities. Details are provided in
Appendix A.

To continue, we define another parameter, âS, which is
the average number of segments per molecule.

By combining eqs 15 and 19 we derive eq 20.

We can then write the average branch point density, λ,
in terms of â and âS.

Equation 21 can of course be rewritten in terms of the
Monte Carlo probabilities.

Now we need to relate the segment molecular weight
distribution and the branching statistics to the overall
molecular weight distribution of a branched system. The
average molecular weights of molecules with n branch
points are given by eqs 23 and 24, which are derived in
Appendix B.

The number-average molecular weight of the whole
system is then:

The weight-average molecular weight of the whole
system is

Pb )
pp(1 - lp)

1 - pp × lp
(14)

â ) ∑
n)0

∞

nFN(n) (15)

C(n) )
(2n)!

n!(n + 1)!
(16)

FN(n) ) C(n)Pb
n(1 - Pb)

n+1 (17)

â ) ∑
n)0

∞

nFN(n) ) ∑
n)1

∞

nC(n)Pb
n(1 - Pb)

n+1 )
Pb

1 - 2Pb

â )
pp(1 - lp)

1 - 2pp + pp × lp
(18)

âs ) ∑
n)0

∞

(2n + 1)FN(n) (19)

âS ) 2â + 1 (20)

λ ) no. of branch points per molecule
no. of segments per molecule

×
103

no. of C per segment
) ( â

âS
)14 × 103

MN,S
(21)

λ ) 103

2
pp(1 - lp) (22)

MN(n) ) (2n + 1)MN,S (23)

MW(n) ) 2(n + 1)MN,S (24)

MN )

∑
n)0

∞

MN(n)FN(n)

∑
n)0

∞

FN(n)

) (2â + 1)MN,S (25)

MW )

∑
n)0

∞

MN(n)MW(n)FN(n)

∑
n)0

∞

MN(n)FN(n)

)

2(â + 1)(2â + 1)MN,S (26)
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The polydispersity index is thus:

We note that although â is apparently identical to the
branching parameter Bh N of Soares and Hamielec,1 we
find that eq 27 is valid for any value of â whereas the
same relation was not valid above Bh N ) 0.3 in ref 1.

Finally, by combining eq 21 and 25, one finds indeed
eq 3, the relationship between â and the two average
molecular parameters, λ and MN. A more useful rela-
tionship is given in eq 28, which relates â to the two
molecular quantities that can be accurately measured.

Segment Type Statistics
We have presented the results of our Monte Carlo

simulations in terms of a ternary system of linear
chains, free arms and inner backbone segments. We now
present the analytical derivation for the segment sta-
tistics. The fraction of segments that are linear chains
is equal to the ratio of the number fraction of chains
that are linear, FN(0), to the average number of seg-
ments per molecule, âS.

A molecule with n branch points will have (n + 2)
free arms; therefore, the average number of free arms
per molecule is

Equation 30 includes linear molecules, (n ) 0), which
are counted as two free arms. These arms are subtracted
to give the average number of free arms per branched
molecule:

The fraction of segments that are free arms is equal to
the ratio of the average number of free arms per
branched molecule to the average number of segments
per molecule:

Following a similar reasoning we can express the
average number of inner backbone segments per
branched molecule as in eq 33.

Finally, the fraction of the segments that are inner
backbone segments is equal to the ratio of the average

number of inner backbone segments per branched
molecule to the average number of segments per mol-
ecule:

The validity of eqs 30, 32, and 34 is demonstrated by
comparing them to the results of the Monte Carlo
simulations in Figure 5, parts a and b. The results of
the Monte Carlo simulations are also presented in Table
1. As all the segments follow the same Flory distribution
(eqs 8-10), the fractions φL, φA, and φB represent
segment fractions both in number and weight. In Figure
5b, the continuous line represents the locus of all
possible topological composition of single-site metal-
locene systems.

Domain of Validity of the Topological Model
The model presented above is valid for any value of

â. Nevertheless some restrictions exist on the choice of
the monomer selection probability, lp, to be able to
simulate a real branched metallocene polyethylene. If
lp is too small, too many branch points will be created
which will consume all molecules by incorporating them
as branches, thus leading to a percolation of the system,
which actually does not occur for a real system (cf.
Appendix D). The restriction on lp is given by the fact
that the denominator of â in eq 18 must not become zero,

MW

MN
) 2(â + 1) (27)

λ )
14 × 103(2â)(â + 1)

MW
(28)

φL )
FN(0)

âs
)

(1 - Pb)
âs

) â + 1
âs(2â + 1)

) â + 1
(2â + 1)2

(29)

â′A ) ∑
n)0

∞

(n + 2)FN(n) ) â + 2 (30)

âA ) â′A - 2FN (0) ) â + 2 - 2( â + 1
2â + 1) )

â(2â + 3)
2â + 1

(31)

φA )
âA

âS
)

â(2â + 3)

(2â + 1)2
(32)

âB ) ∑
n)1

∞

(n - 1)FN(n) )
2â2

2â + 1
(33)

Figure 5. Comparison of analytical solution with simula-
tions: (a) segment type fractions as a function of â on a
Cartesian plot and (b) the ternary diagram.

φB ) 2â2

(2â + 1)2
(34)
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which leads to the following condition:

Moreover, we have considered until now that all created
chains can be incorporated as macromonomers. This
approximation lies in the fact that we simply added the
kinetic rates RCTA and Râ to form the rate of termination
from which pp was computed. This approach is correct,
but in order to completely describe the system, we need
to introduce a third parameter, v, corresponding to the
probability of terminating a chain by a vinyl group.

This means that only a fraction, v, of the chains created
will be able to serve as macromonomers.

As v is independent of the length or number of branch
points on the main chain, the above derivation is
rigorously valid as long as there is in the system enough
unsaturated chains to be used as macromonomers. The
limitation of the Monte Carlo based method occurs when
the number of vinyl-terminated chains becomes smaller
than the total number of branch points in the system.
The average number of branch point which the catalyst
will create before terminating the chain is simply the
ratio of Pb, the probability of occurrence of a branch
point, over (1 - Pb), the probability of completing a
chain. The condition of applicability then reads:

This condition on lp becomes more restrictive than eq
35 and therefore becomes the only necessary condition:

This means that if eq 38 is obeyed, Monte Carlo
simulations obtained from pp, lp, and v will represent
a possible branched metallocene system.

Although these three parameters appear as indepen-
dent in the simulation, they cannot be controlled
independently in the reactor. For instance in the case
one wants to study the influence of the rate of vinyl
termination, the parameter lp cannot be kept constant
since the probability of incorporating a macromonomer
depends on the amount of available vinyl-terminated
chains. The dependence of lp on v can be obtained in
the following way.

First the monomer selection probability is given using
the notations of the kinetic reactions by

where M is the concentration of monomers and Dd is
the total macromonomer concentration defined as

We define the total concentration of dead chains, D+,
and the total concentration of terminated chains, D0,
as

The vinyl termination probability v is

If we define lp0 as the value of lp when v ) 1, which
occurs when Dd ) D0, we have

Now if the rate of vinyl termination decreases, combin-
ing eqs 39 and 42, one gets

We eliminate kinetic constants using eq 43, and obtain
the following relation

from which the evolution of LCB with rate of vinyl
termination can be easily derived with help of eq 22.

Application of Statistical Model to Previously
Studied Materials

Application of these results to actual branched met-
allocene PE samples brings more information about the
topology of these materials than can be directly mea-
sured from existing analytical techniques. We consider
four long chain branched metallocene polyethylenes
(Table 2). These materials, labeled HDB1-4, have
previously been thoroughly characterized in terms of
molecular structure7 and rheological properties.7-10 For
these materials we calculate â from eq 28 making use
of the two measurable molecular quantities that we
consider to be the most reliable, as explained below. The
resulting segment fractions are reported in Figure 6.
For this particular series of materials, since the segment
molecular weights are comparable, (MN,S ∼ 30 000) the
comparison of segmental composition seen on the tri-
angular diagram gives qualitative information about the
rheological properties of these samples. It is consistent

Table 2. Long Chain Branched MPEs

resin
MW

DRIa
MW

LALLS
PDI
DRI

PDI
LALLS/DRI

LCB/103 C
13C NMR â MN,S

PDI
eq 27

HDB1 78 000 77 000 1.98 1.95 0.026 0.067 31 800 2.13
HDB2 80 000 82 000 1.93 1.98 0.037 0.099 31 200 2.20
HDB3 82 000 86 000 1.99 2.09 0.042 0.116 31 300 2.23
HDB4 84 000 96 000 2.14 2.45 0.080 0.224 27 100 2.45

a DRI ) differential refractive index detector.

lp > 2 - 1
pp

(35)

v )
Râ

Râ + RCTA
(36)

Pb

1 - Pb
)

pp(1 - lp)
1 - pp

e v (37)

lp > 2 - 1
pp

+ (1 - v)1 - pp
pp

(38)

lp )
RM

RM + RLCB
)

kpM

kpM + kLCBDd
(39)

Dd ) ∑
x,n

Dx,n
d (40)

D+ ) ∑
x,n

Dx,n
+ and D0 ) Dd + D+ (41)

v ) Dd

D0
(42)

lp0 )
kpM

kpM + kLCBD0
(43)

1
lp

) 1 + v
kLCBD0

kpM
(44)

lp )
lp0

lp0 + v(1 - lp0)
(45)
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with the observed increase of viscosity from HDB1 to
HDB47,8 and the fact that only HDB4, which has 5%
inner segments, displays significant strain hardening.
To determine the topological parameters â and MN,S, two
reliable experimental values must be chosen among the
results of GPC, LALLS and NMR presented in Table 2.
We assume that the light scattering measurement gives
the best estimate of weight-average molecular weight
as the universal calibration in combination with dif-
ferential refractive index detectors is known to under-
estimate the molecular weight of long chain branched
molecules. The reason for this is that the separation in
size exclusion chromatography is according to hydro-
dynamic volume; larger molecules leave the column
before smaller molecules. For linear polymers, hydro-
dynamic volume is uniquely related to molecular weight.
This is not the case with polydisperse branched poly-
mers such as LCB mPE, as fractions of constant
hydrodynamic volume will consist of linear chains with
a certain molecular weight and branched chains with
higher molecular weights. Using GPC with a differential
refractive index (DRI) detector results in an estimate
of overall weight-average molecular weight for LCB
mPE equal to the molecular weight of a linear system
with the same weight-average hydrodynamic volume.
In comparison a light scattering detector measures the
weight-average molecular weight of each fraction lead-
ing to an accurate overall MW.

Another difficulty arises when trying to measure the
number-average molecular weight. Light scattering
detectors are insensitive to low molecular weight mol-
ecules leading to a gross underestimation of the number-
average molecular weight. The best estimate of number-
average molecular weight comes from the differential
refractive index (DRI) detector but this of course will
contain the error due to the separation. The best
estimate of the polydispersity index (MW/MN) is obtained
by using the MW from light scattering and the MN from
the DRI detector. This estimate agrees well to that
predicted by eq 27 (Table 2) considering the level of error
that we expect in MN.

The next issue to address here is the discrepancy
between the measurement of branch point density with
13C NMR and the branches that are actually long
enough to affect the rheology. NMR measures the
density of methine carbons that are attached to three
segments of more than five carbons in length. Only
segments that are longer than twice the entanglement
molecular weight, Me, will affect the rheology.11 For

polyethylene, Me is approximately 125012 or 90 carbons;
thus, only the segments that are longer than 180 C will
affect the rheology.

To estimate the fraction of long chain branches that
do not affect the rheology we consider the segment
weight molecular weight distribution given by eq 9 in
its cumulative form:

Recall that the kinetic chain length, x, is equal to the
number of monomers in the chain (M/28) and to half
the number of carbons in the chain. Also, CWS(x) is the
weight fraction of segments that have a kinetic chain
length less than or equal to x. The kinetic chain length
corresponding to 2Me is 90 (i.e., 180 C) and therefore
CWS(90) is the fraction of segments that do not affect
the rheology. In Figure 7, we have plotted [1 - CWS(x)]
for HDB1 and HDB4. For all materials studied here 99.9
wt % of the weight of the LCB measured by NMR can
be expected to act as long branches in terms of the
rheological properties.

Finally, we introduce the idea of a rheologically
relevant branching parameter for these materials. In
the past, 13C NMR results (λ, LCB/103 C) have been used
to rank materials in terms of their level of long chain
branching7. Equation 28 shows clearly that a single
value of λ can result from an infinite set of â, MW
combinations each of which will have a different average
segment molecular weight (and different seniority and
priority distributions) and therefore different rheological
properties. We propose that the weight-average weight
of branches per molecule, âMW,S, is a more useful
parameter for correlating with rheological properties.
This parameter incorporates the effect of segment
molecular weight and would describe the rheological
behavior exactly if there were no molecules with more
than two branch points. As the weight fraction of
molecules with three or more branch points increases
with increasing â, we expect that for high â any
correlation between a rheological property and âMW,S
would begin to fail (note: FW(n) is plotted for HDB4 in

Figure 6. Ternary diagram with analytical solution and
simulation results for HDB series. Figure 7. Weight fraction of segments with kinetic chain

length greater than X as a function of X. Recall that X ) M/28.
The vertical line indicates the kinetic chain length at which
the segments begin to affect the rheology. For all materials
99.9 wt % of the segments are longer than 2Me.

CWS(x) ) 1 - [2x(â + 1)(2â + 1)
MW/28

+ 1] ×

exp(- 2x(â + 1)(2â + 1)
MW/28 ) (46)
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Figure 12). We demonstrate this in Figure 8 where the
zero shear viscosity enhancement is plotted against
âMW,S. This relationship is linear on the semilog plot
for low â and then curves over in the case of HDB4.
Nevertheless, this correlation is much more useful than
correlations involving only λ, and we demonstrate in the
next section how we might use it to estimate the zero
shear viscosity of blended systems.

Blended Systems

Blends of polymers are often used in applications
where desired properties cannot be obtained with a
single resin. Metallocene polymers are ideal candidates
for blending due to the ease of producing well-defined
molecular structures. In this section we present guide-
lines for making use of our branching architecture
analysis for blends of several single-catalyst mPEs and
for blends of single-catalyst mPEs with other linear
polyethylenes.

We first consider a blend of N resins with respective
average number of branch points per molecule, âi and
weight-average molecular weight MW,i. Recall that in
the single-catalyst mPE system there are two indepen-
dent variables; we present our analysis in terms of â
and MW, but we could also choose to work with any other
two molecular parameters. The number-average molec-
ular weight of the blend is given by eq 47

where the hat refers to a blend and ωi is the weight
fraction of component i in the blend. In the case of
blends of multiple mPE resins, eq 48 also applies:

The weight-average molecular weight of the blend is

given by

To examine the various distributions in the blended
system we must make use of the blend constituent
composition in terms of number fraction, νi, which is
related to the composition in weight fraction as follows:

In the case of blends of multiple mPE resins eq 50 can
be rewritten as

Then the branch point distributions are additive:

as are the parameters âA and âB defined in eqs 31 and
33. The fractions of linear chains φ̂L, of free arms φ̂A,
and of inner backbones φ̂B in the blend are then given
by eq 53.

We see that the segment compositions as displayed in
the ternary diagram are weighted by the number
fraction of segments in the blend that come from
component i, here called ki. Making use of eq 50, we
write ki in terms of ωi for blends of multiple mPE resins:

In eq 54, MN,S,i is the number-average molecular weight
of the segments in component i. The inverse relationship
can be used to obtain the weight fractions from a point
on the ternary diagram:

The simplest way to represent the composition of a
binary blend is to draw a tie line between the two points
on the ternary diagram that represent the two blend
components. For example, consider the blending of two

Figure 8. Correlation between zero shear viscosity enhance-
ment (150 °C) and average mass of arms per molecule. Zero
shear viscosity of linear polyethylene was calculated using the
relation presented in ref 7. Filled symbols indicate viscosity
enhancement with respect to a linear polyethylene of MW )
MW,S and open symbols indicate viscosity enhancement with
respect to a linear polyethylene of the same MW.

M̂N ) [∑i)1

N ωi

MN,i
]-1

(47)

M̂N ) [∑i)1

N 2ωi(âi + 1)

MW,i
]-1

(48)

M̂W ) ∑
i)1

N

ωiMW,i (49)

νi )
ωi/MN,i

∑
i)1

N

ωi/MN,i

for i ) 1-N (50)

νi )
2(âi + 1)ωi/MW,i

∑
i)1

N

2(âi + 1)ωi/MW,i

for i ) 1-N (51)

F̂N(n) ) ∑
i)1

N

νiFN,i(n) (52)

φ̂R )

∑
i)1

N

νi(2âi + 1)φR,i

∑
i)1

N

νi(2âi + 1)

) ∑
i)1

N

kiφR,i R ) L, A, B (53)

ki )
(2âi + 1)2(âi + 1)ωi/MW,i

∑
i)1

N

(2âi + 1)2(âi + 1)ωi/MW,i

)
ωi/MN,S,i

∑
i)1

N

ωi/MN,S,i

(54)

ωi )
kiMN,S,i

∑
i)1

N

kiMN,S,i

(55)
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long chain branched mPEs (resin 1 and resin 2) shown
on the ternary diagram in Figure 9. The blend composi-
tion (in weight fraction) will fall on the tie line with its
exact location determined by the lever rule:

In eq 56, a and b are the distances shown in Figure 9.
The line connecting the 100% linear point with the 50%
free arms and 50% inner backbone segments point is
the limit below which compositions are physically
impossible (there must be at least one more free arm
than inner backbones in the system).

The rheological properties of the blended system will
depend on the segment composition (φ̂R) and on the
molecular weight distribution of the segment types.
Therefore, it will also be necessary to consider these
distributions. Let us consider a general blended system
in which components 1 through m are single-catalyst
long chain branched mPEs and components m + 1
through N are linear polyethylenes (of any kind). The
weight molecular weight distribution of the linear
segments in such a system is given by eq 57

where

and the subscript L refers to linear segments. The

weight-average molecular weight of the linear segments
is

The weight distributions of the free arms and inner
segments is given by eq 60

where pi is given by eq 58. The weight-average molec-
ular weights of these segments are then

Consider the example shown in Figure 10, where two
possible ways of making a blend with the same segment
composition are shown. In the first case, the blend is
made by combining two LCB mPEs with different â, and
in the second case, the blend is made by combining one
LCB mPE with a linear mPE. Even though these two
blends will fall on the same point on the ternary
diagram, they could have very different segment mo-
lecular weight distributions and segment seniority
distributions and therefore different rheological proper-
ties. To obtain an approximate estimate of the zero
shear viscosity of a blend, one might use the results in
Figure 8 to estimate the zero shear viscosity of the pure
components and then use a blending rule to calculate
the zero shear viscosity of the blend. A similar approach
could be used with other rheological properties as we
will address in future work.

Of central concern is how to plan the composition of
a blend to give the desired properties. Here we consider
only the rheological properties and present general

Figure 9. Composition of a blend of two metallocene resins.

a

a + b
) k2 )

(2â2 + 1)2(â2 + 1)ω2/MW,2

∑
i)1

2
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b
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∑
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+ ∑
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2(âi + 1)(2âi + 1)2

MW,i/28
(58)

M̂W,L )

∑
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∑
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guidelines. Future work is planned to present a more
concrete analysis. Aside from melt fracture behavior,
the two most important rheological properties are the
viscosity under processing conditions and the strain
hardening nature of the extensional viscosity. Simply
stated, free arms increase the viscosity of the system
(relative to a linear system of the same molecular
weight) without causing significant strain hardening.
Only the inner segments contribute to strain hardening,
and the higher the priority of the inner segment, the
more it contributes to strain hardening.4 Linear chains
dilute the effects of both the free arms and the inner
segments. Generally, an increased viscosity has a nega-
tive impact on the processing operation, and increased
strain hardening has a positive impact on the processing
operation.

In a single-catalyst long chain branched mPE the only
way to increase the amount of inner segments is to move
along the curve in the ternary diagram, which neces-
sarily results in an increase in the amount of free arms,
and therefore an enormous increase in the viscosity. To
decrease the viscosity while maintaining some of the
strain hardening one can move from the curve by
blending. To optimize the processing behavior the
segment composition of the blend should be as close as
possible to the limiting line (φB/φA ) 1) and as far as
possible from the purely linear system (φL ) 1). The
limiting factor will be the handling of the high â
component prior to blending.

Now we must also mention that while blending
provides one way of increasing the utility of metallocene
polyethylenes it will not provide all of the answers. The
next step of course is to consider multiple-metallocene-
catalyst systems, which will provide many more possible
structures and also perhaps improved processability.

Conclusions

A practical framework for the analysis of the branch-
ing architecture of metallocene polyethylenes is pre-
sented. An analytical solution of the statistics is pre-
sented in a form relevant to rheology-chain structure
relations. This solution was verified using rigorous
Monte Carlo simulations. For long chain branched
polyethylene synthesized with single-site catalysts, we
find that the most useful parameter for describing the
branching structure is the average number of branch
points per molecule, which can be determined from the
combination of light scattering and 13C NMR measure-
ments.
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Appendix A: The Catalan Numbers

To develop relations for the various distributions in
the system, we need to consider the number of ways a
molecule of n branch points can be produced in the
polymerization process. For example a linear chain can
be formed in only one way; by not incorporating any
macromonomers; thus, C(0) ) 1. Likewise, a chain with
a single branch point can only be formed by incorporat-
ing a single linear macromonomer; C(1) ) 1. However,
a chain with two branch points can be formed either by
incorporating two linear macromonomers or by incor-
porating a single macromonomer that has one branch
point; C(2) ) 2.

For more than two branch points, the preceding
approach to counting the possible ways of constructing
a molecule becomes inefficient, and a more useful
approach is presented in Figure 11. In this approach,
we choose a segment to focus on (indicated in the figure
by a solid line) and make up the rest of the molecule by
adding one linear chain and one chain with (n - 1)
branch points. This gives a structure that can be
constructed in C(0)C(n - 1) different ways. We then
make the next structure by returning to our original
segment and adding one chain with a single branch
point and one chain with (n - 2) branch points. This
structure can be constructed in C(1)C(n - 2) different
ways. We continue making different structures until we
end up with a chain with (n - 1) branch points in the
original position of the linear chain and a linear chain
in the original position of the chain with (n - 1) branch
points. Then the number of ways that the molecule of n
branch points can be constructed is the sum over all of

Figure 10. Two alternate blends with the same segment
composition.

Figure 11. Counting configurations for molecules
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the structures:

The solution to the previous recursive equation, the
Catalan numbers, was found by Catalan in 1838

as the coefficients in the development of the generating
function13

This result originally was applied by Flory6 to solve
an relation similar to eq A1 in the case of random
branching of linear chains describing the sol-gel transi-
tion for molecules with functionality 3. Although the
polymerization process that we are considering is dif-
ferent, the number of ways to create a molecule with n
branch points is the same. The above equations can be
used to derive eq 18 in the text. According to the
definition of the average number of branch points per
chain

As

we can write

In the present case, Pb < 1/2 which implies that Pb(1 -
Pb) < 1/4.

Therefore

Then

Appendix B: Molecular Weight Distribution for
Molecules of n Branch Points

We now wish to find the MWD for molecules with n
branch points. The probability P(x,n) for having 2n + 1
segments of kinetic length xi (1 e i e 2n+1) each with

distribution nS and a total degree of polymerization
equal to x is

This can be rewritten by using:

to give:

In eq B3, the probability p ) pp × lp. The distribution
is then obtained by summing on all possible values of
xi between 1 and x:

Actually, the integral must be written as

where the boundary êi is

Since each segment must contain at least one monomer,
the length of x1 must therefore be chosen between 1 and
ê1 ) x - 2n, since there remain 2n more segments. Then
x2 varies between 1 and ê2 ) x - x1 - (2n - 1), x3 until
ê3 ) x - (x1 + x2) - (2n - 2) and x2n until ê2n ) x - (x1
+ ... + x2n-1) - 1 . The integral part of eq B4 is then
exactly given by eq B7.

Finally, the number MWD of molecules with n branch
points before normalization is

with x g 2n+1. As p is very close to 1, we can
approximate the previous equation by

C(n) ) ∑
i)0

n-1
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(2n)!

n!(n + 1)!
(A2)

∑
n)0

∞
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∞
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and as x is usually significantly larger than (2n + 1),
we can further simplify to give

After normalization by integration of P(x,n) between x
) (2n + 1) and x ) +∞ for eqs B8 and B9 and between
x ) 0 and x ) +∞ for eq B10, the three relations are
very similar. We can therefore use eq B10, which is
easily normalized by making use of eq B11:

Therefore, the normalized number, weight, and Z
distributions of molecules with n branch points are
given by eqs B12-B14.

The average molecular weights are given by eqs B15-
B17.

The polydispersity indexes are MW(n)/MN(n) ) (2n + 2)/
(2n + 1) and MZ(n)/MN(n) ) (2n + 3)/(2n + 1), which
gives the classical results for the Flory distribution
when n ) 0.

Appendix C: Weight Distributions
We now present the most general description of the

single-metallocene-catalyst system in terms of bivariate
distributions. The bivariate number distribution is given
by eq C1

which can be written in terms of â by substituting in
eqs 15 and B12 and making use of eq 14

or using only XN ) MN/28 and â as parameters:

We recall that 1 - p ) 1 - pp × lp ) 1/XN,S ) 2â +
1/XN.

To derive the weight and Z bivariate distribution,
which are more relevant than the number distribution
to describe, respectively, the rheological and scattering
behaviors, the average molecular weights together with
the weight and Z fractions of molecules with n branch
points are also needed:

FN(n), FW(n) and FZ(n) are plotted for â ) 0.224 in
Figure 12. The weight and Z bivariate distributions are

P(x,n) ≈ 1
(2n)!
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∞
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Figure 12. Number, weight, and Z fractions of molecules with
n branch points in HDB4 (â ) 0.224). The lines are drawn to
aid the eye only and do not indicate the existence of these
functions at noninteger values of n.
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then given by

or equivalently

and

which leads to

where XW ) 2(â + 1)XN.
By summing on n, one can get the overall number,

weight, and Z distributions of the branched system:

This makes use of the identity

where I1 is the modified Bessel function of the first kind
of order 1. Then the molecular weight distribution reads

We note that x and XN can be replaced with M and MN
respectively to get the normalized molecular weight
distributions W(M), and the number and Z distributions
are related to W(M) by the usual relations:

These relations are important insofar as the experi-
mental determination of molecular weight distributions
of branched metallocene PE is extremely delicate:
indeed, as shown by Zimm and Stockmayer,14 molecules
with different molecular weights can be eluted at the

same time, provided that they have different numbers
of branch points. Unfortunately, correcting the GPC
curve for branch systems requires knowledge of the
topology. This justifies why the determination of branch-
ing density from average molecular weights, as sug-
gested by eqs 27 and 28, is not practically achievable.

Appendix D: Apparent Percolation Threshold
As â approaches ∞, i.e., when Pb ) 1/2 the system

approaches an apparent percolation. The number frac-
tion of molecules with n branch points is given by eq
D1 for n > 0.

For n ) 0

By using the Stirling formula n! ≈ n(n+1/2)e-nx2π, one
can show that for large n, FN(n) ∝ n-3/2 and FW(n) ∝
n-1/2. Thus, both functions are decreasing with increas-
ing n. Even at the limit â f ∞, half the chains are linear,
and there are more three-arm stars than any other
branched structures. The ranking is the same in terms
of weight fractions, although the differences between
the weight fractions of the various structures are less.
Therefore, this is not properly speaking a percolation.
Nevertheless, the average molecular size diverges and
the fraction of linear chains becomes negligible com-
pared to the fraction of free arms and inner backbones.
As explained in the text, the limit âf ∞ can only be
considered when all chains formed are vinyl terminated.

Nomenclature of Principal Symbols

â ) average number of branch points per chain
λ ) branching density [LCB/103 C]
φL, φA, φB ) fractions of linear segments, free arms, and

inner backbones
φ̂L, φ̂A, φ̂B ) fractions of linear, free arms, and inner

backbones in a blend
νi, ωi ) number and weight composition of a blend for

component i
C(n) ) Catalan numbers
fN(x,n), fW(x,n), fZ(x,n) ) number, weight, and Z bivariate

distributions
FN(n), FW(n), FZ(n) ) number, weight, and Z fraction of

molecules with n branch points
lp ) monomer/macromonomer selection probability
M ) molecular weight
Me ) average weight between entanglements (1250 for PE)
M0 ) monomer molecular weight (28 for PE)
MN, MW, MZ ) number-, weight-, and Z-average molecular

weights of resin
M̂N, M̂W ) number and weight molecular weights of a blend
MN,S, MW,S ) number- and weight-average molecular

weights of segments
MN(n), MW(n), MZ(n) ) average molecular weights of

molecules with n branch points
N(M), W(M), Z(M) ) number, weight, and Z molecular

weight distributions
n ) number of branch points
nS(x) ) segment number distribution of kinetic length
CNS(x) ) cumulative segment number distribution of

kinetic length
Pb ) Flory branching probability

fW(x,n) ) FW(n)PW(x,n) ) x2n+1e-x(1-pp×lp)

n!(n + 1)!
×

ppn(1 - lp)n(1 - pp)n+1(1 - 2pp + pp × lp) (C8)

fW(x,n) )
ân(â + 1)n+1

n!(n + 1)!
x2n+1

XN
2n+2

exp[- (2â + 1) x
XN] )

x
XN

fN(x,n) (C8a)

fZ(x,n) ) FZ(n)PZ(x,n) ) x2n+2e-x(1-pp×lp)

n!(n + 1)!
×

ppn(1 - lp)n(1 - pp)n(1 - 2pp + pp × lp)3

2
(C9)

fZ(x,n) ) 1
2

ân(â + 1)n

n!(n + 1)!
x2n+2

XN
2n+3

exp[- (2â + 1) x
XN] )

x
XW

fW(x,n) (C9a)

N(x) ) ∑
n)0

∞

fN(x,n)W(x) ) ∑
n)0

∞

fW(x,n) Z(x) ) ∑
n)0

∞

fZ(x,n)

(C10)

∑
n)0

∞ (z/2)2n+1

n!(n + 1)!
) I1(z) (C11)

W(x) )
x1 + â-1

XN
exp(- (2â + 1) x

XN
)I1(2xâ(â + 1) x

XN
)

(C12)

N(M) )
MN

M
W(M) (C13)

Z(M) ) M
MW

W(M) (C14)

FN(n) )
2n(2n - 1)
n(n + 1)

Pb(1 - Pb)FN(n - 1) )

2n - 1
2n + 2

FN(n - 1) (D1)

FN(0) ) 1 - Pb ) 1/2 (D2)
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PDI ) polydispersity index
PN(x,n), PW(x,n), PZ(x,n) ) number, weight, and Z MWD of

molecules with n branch points
pp ) propagation probability
Rp, Rt, RLCB, RCTA, Râ ) kinetic rates
v ) vinyl termination probability
wS(x) ) segment weight distribution of kinetic length
CWS(x) ) cumulative segment weight distribution of kinetic

length
x ) kinetic length (M/M0)
XN, XW ) number- and weight-average kinetic length of

resin
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