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    Chapter 7.  XRD (Chapter 8 Campbell & White, Alexander "X-ray Diffraction
    Methods in Polymer Science").   

The general principles of diffraction are covered in Cullity, "Elements of X-ray Diffraction".  If
you are unfamiliar with XRD you will need to review or read Cullity Chapters 1-7 and the
appendices.  Alexander's text referenced above is also useful as an introduction to XRD but is less
general and at a slightly more advanced level.  

There are a number of differences between x-ray diffraction in polymers and metallurgical (Cullity)
or ceramic diffraction.

1)  Polymers are not highly absorbing to x-rays.  The dominant experiment is a transmission
experiment where the x-ray beam passes through the sample.  This greatly simplifies analysis of
diffraction spectra for polymers but requires somewhat specialized diffractometer from those
commonly used for metallurgy (usually a reflection experiment).

From Alexander, "X-Ray Diffraction Methods in Polymer Science"

For transmission geometry the optimal sample thickness is 1/µ where µ is the linear absorption
coefficient.  Typically the optimal thickness for a hydrocarbon polymer is 2 mm.  (See Cullity for
calculation of optimal thickness for a diffraction sample in transmission).

2)  DOC:  Polymers are never 100% crystalline.  XRD is a primary technique to determine the
degree of crystallinity in polymers.

3)  Synthetic polymers almost never occur as single crystals.  The diffraction pattern from
polymers is almost always either a "powder" pattern (polycrystalline) or a fiber pattern (oriented
polycrystalline).  (Electron diffraction in a TEM is an exception to this rule in some cases.)
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4)  Microstructure:  Crystallite size in polymers is usually on the nano-scale in the thickness
direction.  The size of crystallites can be determined using variants of the Scherrer equation.

5)  Orientation:  Polymers, due to their long chain structure, are highly susceptible to
orientation.  XRD is a primary tool for the determination of crystalline orientation through the
Hermans orientation function.

6)  Polymer crystals display a relatively large number of defects in some cases.  This leads to
diffraction peak broadening (see Campbell and White or Alexander for details).

7)  Polymer crystallites are very small with a large surface to volume ratio which enhances the
contribution of interfacial disorganization on the diffraction pattern.  

8)  SAXS:  Due to the nano-scale size of polymer crystallites, small-angle scattering is
intense in semi-crystalline polymers and a separate field of analysis based on diffraction at angles
below 6° has developed (see Alexander and Chapter 8 of these notes for details).

Introduction:

Diffraction or scattering is a separate category of analytic techniques using electromagnetic
radiation where the interference of radiation arising from structural features is observed.  The
interference pattern is the Fourier transform of the pair wise correlation function.  The pair
wise correlation function can be constructed in a though experiment where a multiphase material is
statistically described by a line throwing experiment.  If lines of length "r" are thrown in to a 2
phase material there is a probability that both ends of the lines fall in the dilute phase.  This
probability in 3-d space changes with the size of the line, "r", and a plot of this probability as a
function of "r" is a plot of the pair wise distribution function.  For a crystal the two phases are
atoms and voids and peaks in the pair wise correlation function occur at multiples of the lattice
spacing.  Interference which results from correlations of different domains or atoms is usually
associated with the "Structure Factor" or "Interference Factor", S2(2θ).  Interference can also occur
if the individual domains are prefect structures such as spheres.  For a sphere, there is a sharp
decay in the pair wise correlation function near the diameter of the sphere and this sharp decay
results in a peak in the Fourier transform of the correlation function.  For a metal crystal this
corresponds to the atomic form factor, f2(2θ).  For larger scale domains interference associated

with the form of the scattering units is generally termed the "form factor", F2(2θ).  

The scattered intensity as a function of angle is then the product of two terms, the form factor
(f2(2θ) or F2(2θ)) and the structure factor (S2 (2θ)):

I(2θ) = Constant F2(2θ) S2 (2θ)

For XRD the form factor is usually obtained from tabulated values and the major interest is in the
Structure factor.  For small angle scattering dilute conditions are usually of interest making the
structure factor go to a constant value of 1 and the form factor for complex structures are
investigated.

Thus, the basic principles of scattering and diffraction are the same, while the implementation of
these principles are quite different.

Bragg's Law:
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Cullity and Alexander derive Bragg's Law using the mirror analogy (specular analogy).  It can also
be derived from interference laws or using "inverse space" (see appendix in Cullity).  The features
of Bragg's Law is that structural size is inversely proportional to a reduced scattering angle, so
high angle relates to smaller structure and low angle relates to large structure.  Small-angle
scattering measures colloidal to nano-scale sizes.  There is no large scale limit to diffraction.  The
small scale limit (i.e. the smallest measurable size) is λ/2 as is inherent in Bragg's Law:

d = λ/2 (1/sinθ)

θ is half of the scattering angle measured from the incident beam.  The 1/sinθ term in Bragg's law

acts as an amplification factor.  The minimum value of which is 1 for 2θ = 180° (direct back
scattering).  The maximum value of the amplification factor is ∞ so that theoretically no size limit
exists with a given radiation of wave length λ .  In reality the diffraction geometry and coherence
length of the radiation leads to a large scale limit on the micron scale.

Typically diffracted intensity if plotted as a function of 2θ.  Since the d-spacing is of interest one

might wonder why diffraction data isn't plotted as a function of sinθ or 1/sinθ.  This is in fact

done with the use of the "scattering vector" q or s.  q = 4π/λ sin(θ) = 2π/d and s = 2/λ sin(θ) =
1/d.  The appendix of Cullity gives a good description of diffraction in "q" or "s" reciprocal space.  

The Fourier transform of the real space vector, "r", used to determine the pair wise correlation
function is the scattering vector "q".

Review of Crystalline Polymer Morphology:

   "Molecular"       scale        Crystalline        Structure:   

Consider that we can form an all-trans oligmeric polyethylene sample an bring it below the
crystallization temperature.  The molecules will be in the minimum energy state and will be
in a planar zigzag form.  These molecular sheets, when viewed from end will look like a
line just as viewing a rigid strip from the end will appear as a line.  

Crystal systems are described by lattice parameters (for review see Cullity X-ray Diffraction for
instance).  A unit cell consists of three size parameters, a,b,c and three angles α, β, γ.
Cells are categorized into 14 Bravis Lattices which can be categorized by symmetry for
instance.  All unit cells fall into one of the Bravis Lattices.  Typically, simple molecules and
atoms form highly symmetric unit cells such as simple cubic (a=b=c, α=β=γ=90°) or
variants such as Face Center Cubic or Body Centered Cubic.  The highest density crystal is
formed equivalently by FCC and Hexagonal Closest Packed (HCP) crystal structures.
These are the crystal structures chosen by extremely simple systems such as colloidal
crystals.  Also, Proteins will usually crystallize into one of these closest packed forms.
This is because the collapsed protein structure (the whole protein) crystallizes as a unit cell
lattice site.  In some cases it is possible to manipulate protein molecules to crystallize in
lamellar crystals but this is extremely difficult.

As the unit cell lattice site becomes more complicated and/or becomes capable of bonding in
different ways in different directions the Bravis lattice becomes more complicated, i.e. less
symmetric.  This is true for oligomeric organic molecules.  For example olefins (such as
dodecane (n=12) and squalene (n=112)) crystallize into an orthorhombic unit cells which
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have a, b and c different while α=β=γ=90°.  The reason a, b and c are different is the
different bonding mechanisms in the different directions.  This is reflected in vastly
different thermal expansion coefficients in the different directions.  The orthorhombic
structure of olefinic crystals is shown below.  Two chains make up the unit cell lattice site
(shown in bold).  The direction of the planar zigzag (or helix) in a polymer crystal is
always the c-axis by convention.

a

b
c

PE/Olefin crystal structure.

See also, Campbell and White figure 8.4.  
    Chain        Folding:   

The planar zigzag of the olefin or PE molecule crystallize as shown above into an orthogonal unit
cell.  This unit cell can be termed the first or primary level of structure for the olefin crystal.
Consider a metal crystal such as the FCC structure of copper.  The copper atoms diffuse to
the closest packed crystal planes and the crystal grows in 3-dimensions along low-index
crystal faces until some kinetic feature interferes with growth.  In a pure melt with low
thermal quench and careful control over the growth front through removal of the growing
crystal from the melt, a single crystal can be formed.  Generally, for a metal crystal there is
no particular limitation which would lead to asymmetric growth of the crystallite and fairly
symmetric crystals result.  

This should be compared with the growth of helical structures such as linear oligomeric olefins,
figure 4.1 on pp. 143 of Strobl.  Here there is a natural limitation of growth in the c-axis
direction due to finite chain length.  This leads to a strongly preferred c-axis thickness for
these oligomers which increases with chain length.  In fact, a trace of chain length versus
crystallite thickness is a jagged curve due to the differing arrangement of odd and even
olefins, but the general progression is linear towards thicker crystals for longer chains until
about 100 mer units where the curve plateaus out at a maximum value for a given quench
depth.  (Quench depth is the difference between the equilibrium melting point for a perfect
crystal and the temperature at which the material is crystallized.)
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Schematic of olefin crystallite thickness as a function of the chain length.

The point in the curve where the crystallite thickness reaches a plateau value in molecular weight is
close to the molecular weight where chains begin to entangle with each other in the melt and
there is some association between these two phenomena.  Also, the fact that this plateau
thickness has a strong inverse quench depth dependence suggests that there is some
entropic feature to this behavior (pp. 163 eqn. 4.20 where dc is the crystallite thickness and
pp. 164 figure 4.18 Strobl).  

Considering a random model for chain structure such as shown in figure 2.5 on pp. 21 as well as
the rotational isomeric state model for formation of the planar zigzag structure in PE, pp. 15
figure 2.2, it should be clear that entropy favors some bending of the rigid linear structure,
and that this is allowed, with some energy penalty associated with gauche conformation of
figure 2.2.  Put another way, for chains of a certain length (Close to the entanglement
molecular weight) there is a high-statistical probability that the chains will bend even below
the crystallization temperature where the planar zigzag conformation is preferred for PE.
When chains bend there is a local free energy penalty which must be paid and this can be
included in a free energy balance in terms of a fold-surface energy if it is considered that
these bends are locally confined to the crystallite surface as shown on pp. 161 figure 4.15;
and pp. 185 figure 4.34.  

There are many different crystalline structures which can be formed under different processing
conditions for semi-crystalline polymers (Figures 4.2- 4.7 pp. 145 to 149; figure 4.13 pp.
157; Figure 4.19, pp. 165; figure 4.21 pp. 170).  As a class these variable crystalline
forms have only two universal characteristics:

1)  Unit cell structure as discussed above.
2)  Relationship between lamellar thickness and quench depth.

This means that understanding the relationship between quench depth and crystallite thickness is
one of only two concrete features for polymer crystals.  John Hoffman was the first to
describe this relationship although his derivation of a crystallite thickness law borrowed
heavily on asymmetric growth models form low molecular weight, particularly ceramic an
metallurgical systems.  Hoffman's law is given in equation 4.23 on pp. 166:
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where n* is the thickness of the equilibrium crystal crystallized at T (which is below the
equilibrium melting point for a crystal of infinite thickness, Tf

∞), σ is the excess surface

free energy associated with folded chains at the lateral surface of platelet crystals, and ∆H
is the heat of fusion associated with one monomer.

Hoffman's law can be obtained very quickly for a free energy balance following the "Gibbs-
Thomson Approach" (Strobl pp. 166) if on considers that the crystals will form
asymmetrically due to entropically required chain folds and that the surface energy for the
fold surface is much higher than that for the c-axis sides..  

σ

R

t

At the equilibrium melting point ∆G∞ = 0 = ∆H - T∞ ∆S, so ∆S = ∆H/ T∞.  
At some temperature, T, below the equilibrium melting point, The volumetric change in free energy

for crystallization ∆fT = ∆H - T ∆S = ∆H(1 - T/T∞) = ∆H(T∞ - T)/ T∞.

The crystallite crystallized at "T" is in equilibrium with its melt and this equilibrium state is adjusted
by adjusting the thickness of the crystallite using the surface energy, that is,

∆GT = 4Rt σside+ 2R2 σ - R2t ∆fT = 0 at T.  
That is, At T the crystallite of thickness "t" is in equilibrium with its melt and this equilibrium is

determined by the asymmetry of the crystallite, t/R.  If ∆fT = ∆H(T∞ - T)/ T∞. is use in this
expression,

4t σside+ 2R σ = R t ∆H(T∞ - T)/ T∞.

Assuming that σside <<< σ, and "t"<<<"R" then,

t = 2 σ T∞./( ∆H(T∞ - T))
which is the Hoffman law.

The deeper the quench, (T∞ - T), the thinner the crystal and for a crystal crystallized at T∞, the
crystallite is of infinite thickness.  (Crystallization does not occur at T∞).  

    Nature       of       the        Chain        Fold        Surface:

In addition to determination of T∞, the specific nature of the lamellar interface in terms of molecular
conformation is of critical importance to the Hoffman analysis.  There are several limiting
examples, 1)  Regular Adjacent Reentry, 2)  Switchboard Model (Non-Adjacent
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Reentry), 3)  Irregular Adjacent Reentry (Thickness of interfacial layer is proportional
to the temperature).  

The synoptic or comprehensive model involves interconnection between neighboring
lamellae through a combination of adjacent and Switchboard models.

The interzonal model involves non-adjacent reentry but considers a region at the interface where
the chains are not randomly arranged, effectively creating a three phase system, crystalline,
amorphous and interzonal.

Several distinguishing features of the lamellar interfaces are characteristic of each of these models.
Adjacent Uniform and Thin Fold Surface High Surface Energy
Switchboard Random chains at interface, Broad interface, Low Surface Energy
Irregular Adjacent Temperature Dependent interfacial thickness Intermediate Surface Energy
Interzonal Extremely Broad and diffuse interfaces with non-random interfacial chains
Synoptic Interfacial properties are variable depending on state of entanglement and

speed of crystallization.
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The Hoffman equation states that the lamellar thickness is proportional to the interfacial energy so
we can say that Adjacent reentry favors thicker lamellae since adjacent reentry has the
highest interfacial energy and the more random interfacial regions should display thinner
lamellae.

    Colloidal        Scale        Structure       in        Semi-Crystalline        Polymers:

Lamellae crystallized in dilute solution by precipitation can form pyramid shaped crystallites which
are essentially single lamellar crystals (figure 4.21 for example).  Pyramids form due to
chain tilt in the lamellae which leads to a strained crystal if growth proceeds in 2
dimensions only.  In some cases these lamellae (which have an aspect ratio similar to a
sheet of paper) can stack although this is usually a weak feature in solution crystallized
polymers.  

Lamellae crystallized from a melt show a dramatically different colloidal morphology as shown in
figure 4.30 pp. 182, 4.13 on pp. 157, 4.7 on pp. 149, 4.6 on pp. 148, 4.4 and 4.5 on pp.
147 and 4.2 on pp. 145.  In these micrographs the lamellae tend to stack into fibrillar
structures.  The stacking period is usually extremely regular and this period is called the
long period of the crystallites.

Long Period

Amorphous

Crystalline

The long period is so regular that diffraction occurs from regularly spaced lamellae at very small
angles using x-rays.  Small-angle x-ray scattering is a primary technique to describe the
colloidal scale structure of such stacked lamellae.  The lamellae are 2-d objects so a small
angle pattern is multiplied by q2 to remove this dimensionality (Lorentzian correction) and
the peak position in q is measured, q*.  q= 4π/λ sin(θ/2), where θ is the scattering angle.

Bragg's law can be used to determine the long period, L = 2π/q*.  Figure 4.8 on pp. 151
shows such Lorentzian corrected data.  The peak occurs at about 0.2 degrees!  In some
cases the x-ray data has been Fourier transformed to obtain a correlation function for the
lamellae which indicate an average lamellar profile as shown in figure 4.9 pp. 152.  

The degree of stacking of lamellae would appear to be a direct function of the density of
crystallization, i.e. in lower crystallinity systems stacking is less prominent, and the extent
of entanglement of the polymer chains in the melt.  You can think of lamellar stacking as
resulting from a reeling in of the lamellae as chains which bridge different lamellae further
crystallize as well as a consequence of spatial constraints in densely crystallized systems.  

In melt crystallized systems, many lamellar stacks tend to nucleate from a single nucleation site and
grow radially out until they impinge on other lamellar stacks growing from other nucleation
sites.  The lamellar stacks have a dominant direction of growth, that is, they are laterally
constrained in extent, so that they form ribbon like fibers.  The lateral constraint in melt
crystallized polymers is primarily a consequence of exclusion of impurities from the
growing crystallites.  
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Fibrillar Growth  Front
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"Impurities" include a number of things such as dirt, dust, chain segments of improper tacticity,
branched segments, end-groups and other chain features which can not crystallize at the
temperature of crystallization.  Some of these "Impurities" will crystallize at a lower
temperature so it is possible to have secondary crystallization occur in the interfibrillar
region.  Despite the complexity of the "impurities" it can be postulated that the impurities
display an average diffusion constant, D.  The Fibrillar growth front displays a linear
growth rate, G.  Fick's first law states that the flux of a material, J, is equal to the negative
of the diffusion constant times the concentration gradient ∆c/∆x.  If we make an association
between the flux of impurities and the growth rate of the fibril then Fick's first law can be
used to associate a size scale, ∆x with the ratio of D/G.  This approach can be used to

define a parameter δ, which is known as the Keith and Padden δ-parameter, δ = D/G.  This
rule implies that faster growth rate will lead to narrower fibrils.  Also, the inclusion of high
molecular weight impurities, which have a high diffusion constant, D, leads to wider
fibrils.  There is extensive, albeit qualitative, data supporting the Keith and Padden del
parameter approach to describe the coarseness of spherulitic growth in this respect.

    Branching       of        Fibrils:               Dendrites       versus        Spherulites.   

Low molecular weight materials such as water can grow in dendrite crystalline habits which in
some ways resemble polymer spherulites (collections of fibrillar crystallites which emerge
from a nucleation site).  One major qualitative difference is that dendritic crystalline habits
are very loose structures while spherulitic structures, such as shown in Strobl, fill space in
dense branching.  At first this difference might seem to be qualitative.  
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120°

In low-molecular weight materials such as snowflakes or ice crystallites branching always occurs
along low index crystallographic planes (low Miller indices).  In spherulitic growth there is
no relationship between the crystallographic planes and the direction of branching.  It has
been proposed that this may be related to twinning phenomena or to epitaxial nucleation of
a new lamellar crystallite on the surface of an existing lamellae.  A definitive reason for
non-crystallographic branching in polymer spherulites has not been determined but it
remains a distinguishing feature between spherulites and dendrites.

(Incidentally, the growth of dendrites can occur due to similar impurity transport issues as the
growth of fibrillar habits in polymers.  In some cases a similar mechanism has been
proposed where rather than impurity diffusion, the asymmetric growth is caused by thermal
transport as heat is built up following the arrows in the diagram on the previous page.)

Non-crystallographic branching leads to the extremely dense fibrillar growth seen in figures 4.4 to
4.7 of Strobl.  In the absence of non-crystallographic branching, many of the mechanical
properties of semi-crystalline polymers would not be possible.  As was mentioned above,
non-crystallographic branching may be related to the high asymmetry and the associated
high surface area of the chain fold surface which serves as a likely site for nucleation of
new lamellae as will be discussed in detail below in the context of Hoffman/Lauritzen
theory.

The formation of polymer spherulites requires two essential features as detailed
by Keith and Padden in 1964 from a wide range of micrographic studies:

1)  Fibrillar growth habits.
2)  Low angle, Non-crystallographic branching.

    Polymer        Spherulites.

Figure 4.2 pp. 145 shows a typical melt crystallize spherulitic structure which forms in most semi-
crystalline polymeric systems.  The micrographs in figure 4.2 are taken between crossed
polars and the characteristic Maltese Cross is observed and described on the following
page.  The Maltese cross is an indication of radial symmetry to the lamellae in the
spherulite, supporting fibrillar growth, low angle branching and nucleation at the center of
the spherulite.  In some systems, especially blends of non-crystallizable and crystallizable
polymers, extremely repetitive banding is observed in spherulites as a strong feature, figure
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4.7 pp. 149.  Banding is especially prominent in tactic/atactic blends of polyesters and it is
in these systems in which it has been most studied.  It has been proposed by Keith that
banding is related to regular twisting of lamellar bundles in the spherulite (circa 1980).
Keith has proposed that this twisting is induced by surface tension in the fold surface
caused by chain tilt in the lamellae (circa 1989).  Since most spherulites crystallize in an
extremely dense manner it has been difficult to support Keith's hypothesis with
experimental data.  Regular banding has, apparently, no consequences for the mechanical
properties of semi-crystalline polymers so has been essentially ignored in recent literature.

XRD of Polymers:
Four main features of XRD are of importance to Polymer Analysis:

1) Indexing of Crystal Structures
2) Microstructure
3) Degree of Crystallinity
4) Orientation

1) Indexing of Crystal Structures:  Indexing of crystal structures is similar to the
descriptions in Cullity and other metallurgical texts.  The main difference is that polymer crystals
can not be formed in perfect crystals, so single crystal or Laue patterns are not possible.  Also,
polymer crystals tend to be of low symmetry, orthorhombic or lower symmetry, due to the
asymmetry in bonding of the crystalline lattice, i.e. the c-axis is bonded by covalent bonds and the
a and b axis are bonded by van der Waals interactions or hydrogen bonds.  Additionally, the unit
cell form factor tends to be fairly complicated in polymer crystals.  Several unit cells for polymers
are shown below:

Nylon 66, from Alexander, "X-Ray Diffraction Methods in Polymer Science"
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Polybutadiene (PBD), from Alexander, "X-Ray Diffraction Methods in Polymer Science"

Poly(ethylene adipate), a polyester, from Alexander, "X-Ray Diffraction Methods in Polymer
Science"

Lattice parameters in polymer crystals are strongly temperature dependent as shown in the
following diagram:
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From Balta-Calleja and Vonk, "X-ray Scattering of Synthetic Polymers"

Polymer lattice parameters are also dependent on strain as shown in the following diagram:

From Balta-Calleja and Vonk, "X-ray Scattering of Synthetic Polymers"

Notice that the c-axis (covalent main chain bonds) is much less dependent on thermal or mechanical
strain.

Line widths are broad for polymer diffraction and a substantial amorphous peak is usually present.  
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Isotactic Polystyrene, from Alexander, "X-Ray Diffraction Methods in Polymer Science"

2) Microstructure:  

Cullity deals with metallurgical crystals where crystallite sizes are typically larger than a micron.
With a monochromatic incident beam the diffraction pattern from a single crystal is a sequence of
spots where the Bragg condition is met for certain orientations of crystals (see "a" in figure below).
As the crystallite size becomes smaller, more crystallites meet the Bragg condition and the radial
orientation of these crystallites cover a broader spectrum of angles ("b" and "c" below), eventually
forming Debye-Scherrer powder pattern rings ("c" below).  If crystallite sizes approach 0.1 micron
(1000Å), the Debye-Scherrer ring begins to broaden ("d" in figure below).
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From Cullity, "Elements of X-Ray Diffraction

Polymer crystals are on the order of 100Å in thickness.  Broadening of the diffraction lines due to
small crystallite size becomes a dominant effect and the breadth of the diffraction lines can be used
to measure the thickness of lamellar crystals using the Scherrer equation:

t
B

=
( )

0 9.

cos

λ
θ

λ is the x-ray wavelength, B is the half width at half height for the diffraction peak in radians and θ
is half of the diffraction angle.  The Scherrer equation is derived in Cullity and other texts.  Use of
the Scherrer equation is a primary technique to determine lamellar thickness in polymer crystallites.
This can be used in conjunction with the Hoffman-Lauritzen (Gibbs-Thompson) equation for
studies of crystallization.  

In addition to Scherrer broadening diffraction lines can be broadened in polymers due to defects in
the structure.  This will not be covered in detail in this course but is described in Campbell and
White and in Alexander's text.

3) Degree of Crystallinity:

Polymers are never 100% crystalline since the stereochemistry is never perfect, chains contain
defects such as branches, and crystallization is highly rate dependent in polymers due to the high
viscosity and low transport rates in polymer melts.  A primary use of XRD in polymers is
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determination of the degree of crystallinity.  The DOC is determined by integration of a 1-d XRD
pattern such as that shown below for polyethylene.

From Balta-Calleja and Vonk, "X-ray Scattering of Synthetic Polymers"

The determination of the degree of crystallinity implies use of a two-phase model, i.e. the sample is
composed of crystals and amorphous and no regions of semi-crystalline organization.  The
alternative to the two-phase model is a paracrystalline model which was popular in the early days
of polymer science.  There are limits to the two-phase model, particularly for fairly disorganized
polymer crystalline systems such as polyacrylonitrile (PAN).  Most polymer systems are amenable
to the two-phase model but you should keep in mind that the 2-phase model ignores interfacial
zones where the density may differ from that of the amorphous.  

The integrated XRD intensity measures the volume fraction crystallinity, φc.  Other techniques such
as density gradient columns (see Campbell and White or DSC) measure a mass fraction
crystallinity Ψc.  The two fractions are related by the density ratios, where ρc is the crystalline

density, ρ is the bulk sample density and ρa is the amorphous density,

ψ φ ρ
ρ

ψ
φ ρ
ρc

c c
c

c a= −( ) =
−( )

     and     1
1
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If the density of the sample is known from a density gradient column, the weight fraction degree of
crystallinity can be obtained using:

ψ ρ
ρ

ρ ρ
ρ ρc

c a

c a

= −
−





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Determination of φc from the XRD pattern under the 2-phase assumption involves separation the
diffraction pattern into three parts, 1) Crystalline; 2) Amorphous and 3) Compton Background
(Incoherent Scattering).  The diffracted intensity if proportional to the amount of each of these
contributions.  Consider the 2-d diffraction pattern shown just above section 2) above.  The 1-d
diffraction pattern is a line cut through this pattern as shown below:

1-d Slice of
2-d Pattern

2-d Diffraction Patter n

q

I

The actual scattered intensity is related to a volume integral of the diffracted peak in the 2-d pattern,

V I q dV q I q dqc c q c∝ ( ) = ( )
∞ ∞

∫ ∫
0

2

0

Then the volume fraction degree of crystallinity is given by the ratio of the integral of the crystalline
diffraction intensity over the total coherent scattering, i.e. after subtracting the incoherent
scattering:

φc

c

Compton

q I q dq

q I q I q dq

=
( )

( ) − ( )[ ]

∞

∞

∫

∫

2

0

2

0

This procedure is called the Ruland method and is valid for:
1)  Random crystallite orientation (Powder pattern)
2)  3-d crystalline ordering
3)  Validity of integrals for finite angles of measure, i.e. there is a point in angle where the
crystallinity is not significant to I(q)
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4)  Crystalline peaks can be separated from the amorphous halo

The Ruland equation can be modified for crystalline defects as described in Campbell and White
and Alexander.  Usually the simple form given above is sufficient.  The Ruland method is shown
in the figures below where Iq2 is plotted as a function of q (or s).

From Alexander, "X-Ray Diffraction Methods in Polymer Science"
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From Alexander, "X-Ray Diffraction Methods in Polymer Science"

4) Orientation:

Orientation is covered in the later chapters of metallurgical diffraction texts such as Cullity (see
figure below).
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From Cullity, "Elements of X-Ray Diffraction

Orientation is a more dominant effect in polymer samples especially processed plastics (see figure
below).  Orientation is a dominant feature in control of the mechanical and physical properties of
polymers.  

From Tadmor and Gogos, "Principles of Polymer Processing"
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From Alexander, "X-Ray Diffraction Methods in Polymer Science"
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From Alexander, "X-Ray Diffraction Methods in Polymer Science"

There are a number of techniques for the quantification of orientation from diffraction data.  Cullity
describes the use of stereographic projections on a Wulff Net (shown below left).  The Wulff net is
useful if single crystals are studied and it is desired to determine the orientation with respect to the
diffraction experiment such as in orientation of semi-conductor samples for cleavage.  In most
polymer applications it is desired to determine the distributions of orientation for a polycrystalline
sample with respect to processing directions such as the direction of extrusion, (machine direction
MD), the cross direction (CD) and the sample normal direction (ND).  A more useful stereographic
projection for these purposes is the polar net or pole figure (shown below right).



23

From Alexander, "X-Ray Diffraction Methods in Polymer Science"

The pole figure is a slice across the equator of the sphere of projection with the MD usually defined
at the top of the pole figure and either the CD or ND as the right side.  Normals to planes are
projected from the south pole to the point of intersection on the sphere of projection and where they
cross the equatorial plane a point is plotted on the pole figure.  A typical polar figure for a
processed polymer is shown in the figure below for the (110) and (020) normals for the
polyethylene orthorhombic crystalline structure.  Notice that the plane normals appear as a
topographical plot since there is a distribution in orientation.  The (110) and (020) reflections are
the two dominant peaks in the 1-d diffraction pattern for PE shown above (start of section 3).
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From Balta-Calleja and Vonk, "X-ray Scattering of Synthetic Polymers"

The following figure shows the type of qualitative analysis of orientation which can be performed
using pole figures.  Generally, pole figures are constructed by computer software which is part of
a diffractometer capable of measurement of pole figures such as the Siemens D-500.
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From Alexander, "X-Ray Diffraction Methods in Polymer Science"

The pole figure can give a qualitative picture of orientation in a polymer sample.  Quantitative
measures of orientation can be obtained by considering a radial plot of diffraction data.  

2-d Diffraction Patter n

φ

I

MD

TD

0 36 0

φ

The intensity for a given diffraction line (given 2θ) has two peaks as a function of radial angle, φ
reflecting the two normals to the diffraction plane relative to the MD/TD plane.  The Hermans
orientation function can be calculated for a given plane from the φ dependence of the diffracted
intensity:
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where <cos2φ> is the average cosine squared weighted by the intensity as a function of the radial
angle for the (110) plane.  The Hermans orientation function has the behavior that f = 1
corresponds to perfect orientation in the φ = 0 direction, f = 0 for random orientation and f = -1/2

for perfect orientation normal to the φ = 0 direction.  If the orientation function is calculate for
orthogonal axis such as the a, b, and c unit cell directions for the PE unit cell then fa + fb + fc = 0.
The orientation function for the unit cell vectors can be determined from geometry if the angular
relationship between a plane normal and the unit cell direction is known.  <cos2φ> is calculated by:
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The figure below shows the behavior of the Hermans orientation function for the three unit cell
directions in PE as a function of processing conditions in a fiber spinning process.

From Tadmor and Gogos, "Principles of Polymer Processing"

The orientation function is directly related to polymer properties as shown in the example below.
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From Tadmor and Gogos, "Principles of Polymer Processing"


