Chapter 7. XRD (Chapter 8 Campbell & White, Alexander " X-ray Diffraction
Methods in Polymer Science").

The genera principles of diffraction are covered in Cullity, "Elements of X-ray Diffraction”. If
you are unfamiliar with XRD you will need to review or read Cullity Chapters 1-7 and the
appendices. Alexander's text referenced aboveis also useful as an introduction to XRD but is less
genera and at a dightly more advanced level.

There are anumber of differences between x-ray diffraction in polymers and metallurgica (Cullity)
or ceramic diffraction.

1) Polymers are not highly absorbing to x-rays. The dominant experiment is a transmission
experiment where the x-ray beam passes through the sample. This greatly simplifies anaysis of
diffraction spectra for polymers but requires somewhat specialized diffractometer from those
commonly used for metallurgy (usually areflection experiment).
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Figure 2-3 Ceometry of diffraction by spescimens with axial [fber]) orienbsion:
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From Alexander, "X-Ray Diffraction Methods in Polymer Science"
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For transmission geometry the optima sample thickness is 1/ where u is the linear absorption
coefficient. Typically the optimal thicknessfor a hydrocarbon polymer is 2 mm. (See Cullity for
calculation of optimal thickness for a diffraction sample in transmission).

2) DOC: Polymers are never 100% crystalline. XRD is a primary technique to determine the
degree of crystallinity in polymers.

3) Synthetic polymers amost never occur as single crystals. The diffraction pattern from
polymers is amost always either a "powder” pattern (polycrystalline) or a fiber pattern (oriented
polycrystalline). (Electron diffractionina TEM is an exception to thisrule in some cases.)



4) Microstructure: Crystallite size in polymers is usualy on the nano-scale in the thickness
direction. The size of crystallites can be determined using variants of the Scherrer equation.

5) Orientation: Polymers, due to their long chain structure, are highly susceptible to
orientation. XRD is a primary tool for the determination of crystalline orientation through the
Hermans orientation function.

6) Polymer crystals display a relatively large number of defects in some cases. This leads to
diffraction peak broadening (see Campbell and White or Alexander for details).

7) Polymer crystalites are very small with a large surface to volume ratio which enhances the
contribution of interfacial disorganization on the diffraction pattern.

8) SAXS: Due to the nano-scale size of polymer crystalites, small-angle scattering is
intense in semi-crystalline polymers and a separate field of analysis based on diffraction at angles
below 6° has developed (see Alexander and Chapter 8 of these notes for details).

I ntroduction:

Diffraction or scattering is a separate category of anaytic techniques using eectromagnetic
radiation where the interference of radiation arising from structural features is observed. The
interference pattern is the Fourier transform of the pair wise correlation function. The pair
wise correlation function can be constructed in a though experiment where a multiphase materid is
statistically described by a line throwing experiment. If lines of length "r" are thrown in to a 2
phase materid there is a probability that both ends of the lines fall in the dilute phase. This
probability in 3-d space changes with the size of the line, "r", and a plot of this probability as a
function of "r" is a plot of the pair wise distribution function. For a crystal the two phases are
atoms and voids and peaks in the pair wise correlation function occur a multiples of the lattice
spacing. Interference which results from correlations of different domains or atoms is usualy

associated with the " Structure Factor" or "Interference Factor", $%(20). Interference can also occur
if the individual domains are prefect structures such as spheres. For a sphere, there is a sharp
decay in the pair wise correlation function near the diameter of the sphere and this sharp decay
results in a peak in the Fourier transform of the correlation function. For a metd crystal this

corresponds to the atomic form factor, f%(26). For larger scale domains interference associated
with the form of the scattering unitsis generally termed the "form factor", F(26).

The scattered intensity as a function of angle is then the product of two terms, the form factor
(f4(26) or F%(26)) and the structure factor (S* (20)):

1(26) = Constant F*(28) * (26)

For XRD the form factor is usually obtained from tabulated values and the magjor interest is in the
Structure factor. For small angle scattering dilute conditions are usualy of interest making the
structure factor go to a constant value of 1 and the form factor for complex structures are
investigated.

Thus, the basic principles of scattering and diffraction are the same, while the implementation of
these principles are quite different.

Bragg's Law:



Cullity and Alexander derive Bragg's Law using the mirror analogy (specular analogy). It can aso
be derived from interference laws or using "inverse space” (see appendix in Cullity). The features
of Bragg's Law is that structural size is inversely proportional to a reduced scattering angle, so
high angle relates to smaller structure and low angle relates to large structure. Small-angle
scattering measures colloidal to nano-scale sizes. There is no large scale limit to diffraction. The

small scale limit (i.e. the smallest measurable size) isA/2 asisinherent in Bragg's Law:
d = A/2 (1/sinB)

0 ishalf of the scattering angle measured from the incident beam. The 1/sinf term in Bragg's law

acts as an amplification factor. The minimum vaue of which is 1 for 26 = 180° (direct back
scattering). The maximum value of the amplification factor is oo so that theoretically no size limit

existswith a given radiation of wave length A. In redlity the diffraction geometry and coherence
length of the radiation leadsto alarge scale limit on the micron scale.

Typically diffracted intensity if plotted as a function of 28. Since the d-spacing is of interest one
might wonder why diffraction data isn't plotted as a function of sin@ or 1/sinB. This is in fact

done with the use of the "scattering vector" q or s. q = 41/A sin(B) = 2r7d and s = 2/A sin(B) =
1/d. The appendix of Cullity gives agood description of diffractionin"q" or s reciprocal space.

The Fourier transform of the real space vector, "r", used to determine the pair wise correlation
function is the scattering vector "q".

Review of Crystalline Polymer Morphology:

"Molecular" scale Crystalline Structure:

Consider that we can form an all-trans oligmeric polyethylene sample an bring it below the
crystallization temperature. The molecules will be in the minimum energy state and will be
in a planar zigzag form. These molecular sheets, when viewed from end will look like a
line just as viewing arigid strip from the end will appear asaline.

Crystal systems are described by lattice parameters (for review see Cullity X-ray Diffraction for

instance). A unit cell consists of three size parameters, a,b,c and three angles a, (3, V.
Cdlls are categorized into 14 Bravis Lattices which can be categorized by symmetry for
instance. All unit cellsfall into one of the Bravis Lattices. Typically, ssmple molecules and

atoms form highly symmetric unit cells such as smple cubic (a=b=c, a=B=y=90C) or
variants such as Face Center Cubic or Body Centered Cubic. The highest density crystal is
formed equivalently by FCC and Hexagona Closest Packed (HCP) crystal structures.
These are the crystal structures chosen by extremey smple systems such as colloida
crystals. Also, Proteins will usually crystallize into one of these closest packed forms.
Thisis because the collapsed protein structure (the whole protein) crystalizes as a unit cdl
lattice site. In some cases it is possible to manipulate protein molecules to crystalize in
laméllar crystals but thisis extremely difficult.

As the unit cdl lattice site becomes more complicated and/or becomes capable of bonding in
different waysin different directions the Bravis | attice becomes more complicated, i.e. less
symmetric. Thisis true for oligomeric organic molecules. For example olefins (such as
dodecane (n=12) and squalene (n=112)) crystallize into an orthorhombic unit cells which
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have a, b and c different while a=p=y=9C. The reason a, b and c are different is the
different bonding mechanisms in the different directions. This is reflected in vastly
different thermal expansion coefficients in the different directions. The orthorhombic
structure of olefinic crystalsis shown below. Two chains make up the unit cel lattice Ste
(shown in bold). The direction of the planar zigzag (or hedlix) in a polymer crystd is
always the c-axis by convention.

AN
/ / i
a
PE/Olefin crystal structure.

See also, Campbell and White figure 8.4.
Chain Folding:

The planar zigzag of the olefin or PE molecule crystallize as shown above into an orthogonal unit
cell. Thisunit cell can be termed thefirst or primary level of structure for the olefin crystal.
Consider ametal crystal such asthe FCC structure of copper. The copper atoms diffuse to
the closest packed crystal planes and the crystal grows in 3-dimensions along low-index
crystal faces until some kinetic feature interferes with growth. In a pure met with low
thermal quench and careful control over the growth front through removal of the growing
crystal from the melt, asingle crystal can be formed. Generally, for ametd crysta there is
no particular limitation which would lead to asymmetric growth of the crystalite and fairly
symmetric crystals result.

This should be compared with the growth of hdical structures such as linear oligomeric olefins,
figure 4.1 on pp. 143 of Strobl. Here there is a natura limitation of growth in the c-axis
direction dueto finite chain length. This leads to a strongly preferred c-axis thickness for
these oligomers which increases with chain length. In fact, atrace of chain length versus
crystalite thickness is a jagged curve due to the differing arrangement of odd and even
olefins, but the general progression is linear towards thicker crystalsfor longer chains until
about 100 mer units where the curve plateaus out at a maximum value for a given quench
depth. (Quench depth is the difference between the equilibrium melting point for a perfect
crystal and the temperature at which the material is crystallized.)
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Crystallite Thickness

Number of mer units
Schematic of olefin crystallite thickness as a function of the chain length.

The point in the curve where the crystallite thickness reaches a plateau value in molecular weight is
close to the molecular weight where chains begin to entangle with each other in the melt and
there is some association between these two phenomena. Also, the fact that this plateau
thickness has a strong inverse quench depth dependence suggests that there is some
entropic feature to this behavior (pp. 163 egn. 4.20 where d, isthe crystallite thickness and
pp. 164 figure 4.18 Strohl).

Considering arandom model for chain structure such as shown in figure 2.5 on pp. 21 as well as
the rotational isomeric state model for formation of the planar zigzag structure in PE, pp. 15
figure 2.2, it should be clear that entropy favors some bending of the rigid linear structure,
and that thisis allowed, with some energy penalty associated with gauche conformation of
figure 2.2. Put another way, for chains of a certain length (Close to the entanglement
molecular weight) thereis a high-statistical probability that the chainswill bend even below
the crystallization temperature where the planar zigzag conformation is preferred for PE.
When chains bend there is a loca free energy pendty which must be paid and this can be
included in a free energy balance in terms of a fold-surface energy if it is considered that
these bends are locally confined to the crystallite surface as shown on pp. 161 figure 4.15;
and pp. 185 figure 4.34.

There are many different crystalline structures which can be formed under different processing
conditions for semi-crystalline polymers (Figures 4.2- 4.7 pp. 145 to 149; figure 4.13 pp.
157; Figure 4.19, pp. 165; figure 4.21 pp. 170). As a class these variable crystalline
forms have only two universal characteristics:

1) Unit cell structure as discussed above.

2) Relationship between lamellar thickness and quench depth.

This means that understanding the relationship between quench depth and crystallite thickness is
one of only two concrete features for polymer crystals. John Hoffman was the first to
describe this relationship although his derivation of a crystalite thickness law borrowed
heavily on asymmetric growth models form low molecular weight, particularly ceramic an
metallurgical systems. Hoffman'slaw is given in equation 4.23 on pp. 166:

2O-m, eTfoo

" =——"-, Hoffman Law
AR (T -T)



where n* is the thickness of the equilibrium crystal crystalized a T (which is below the
equilibrium melting point for a crystal of infinite thickness, T,”), o is the excess surface

free energy associated with folded chains at the laterd surface of platelet crystals, and AH
isthe heat of fusion associated with one monomer.

Hoffman's law can be obtained very quickly for a free energy balance following the "Gibbs-
Thomson Approach” (Strobl pp. 166) if on considers that the crystals will form
asymmetrically dueto entropically required chain folds and that the surface energy for the
fold surface is much higher than that for the c-axis sides..

R

At the equilibrium melting point AG, =0=AH-T_AS, soAS=AH/T,..
At some temperature, T, below the equilibrium melting point, The volumetric change in free energy
for crystallization Af, = AH - TAS=AH(1 - T/T,) = AH(T,, - T)/ T..

The crystallite crystallized at "T" isin equilibrium with its melt and this equilibrium state is adjusted
by adjusting the thickness of the crystallite using the surface energy, that is,

AG, =4Rto  + 2RO - Rt Af, =0at T.

That is, At T the crystallite of thickness "t" is in equilibrium with its melt and this equilibrium is
determined by the asymmetry of the crystallite, t/R. If Af; = AH(T,, - T)/ T,,. isuse in this
expression,

4t 04t 2RO =RtAH(T, - T)/ T..

Assuming that o, <<< g, and "t"<<<"R" then,

t=20T,/(AH(T,-T))

which is the Hoffman law.

The deeper the quench, (T, - T), the thinner the crystal and for a crystal crystalized a T, the
crystaliteis of infinite thickness. (Crystallization does not occur at T).

Nature of the Chain Fold Surface:

In addition to determination of T, the specific nature of the lamellar interface in terms of molecular
conformation isof critical importance to the Hoffman analysis. There are severa limiting
examples, 1) Regular Adjacent Reentry, 2) Switchboard Model (Non-Adjacent



Reentry), 3) Irregular Adjacent Reentry (Thickness of interfacial layer is proportiona
to the temperature).

The synoptic or comprehensive model involves interconnection between neighboring
lamellae through a combination of adjacent and Switchboard models.

The inter zonal model involves non-adjacent reentry but considers aregion at the interface where

the chains are not randomly arranged, effectively creating athree phase system, crystalline,
amorphous and interzonal .

Severd distinguishing features of the lamellar interfaces are characteristic of each of these models.

Adjacent Uniform and Thin Fold Surface High Surface Energy

Switchboard Random chains at interface, Broad interface, Low Surface Energy

Irregular Adjacent Temperature Dependent interfacia thickness Intermediate Surface Energy
Interzonal Extremely Broad and diffuse interfaces with non-random interfacia chains
Synoptic Interfacial properties are variable depending on state of entanglement and

speed of crystallization.



The Hoffman equation states that the lamellar thickness is proportional to the interfacial energy so
we can say that Adjacent reentry favors thicker lamellae since adjacent reentry has the
highest interfacial energy and the more random interfacial regions should display thinner
lamellae.

Colloidal Scale Structure in Semi-Crystalline Polymers:

Lamellae crystallized in dilute solution by precipitation can form pyramid shaped crystallites which
are essentialy single lamdlar crystals (figure 4.21 for example). Pyramids form due to
chain tilt in the lamellae which leads to a strained crystal if growth proceeds in 2
dimensions only. In some cases these lamellae (which have an aspect ratio smilar to a
sheet of paper) can stack athough this is usually a weak feature in solution crystallized
polymers.

Lamellae crystalized from amelt show a dramaticaly different colloidal morphology as shown in
figure 4.30 pp. 182, 4.13 on pp. 157, 4.7 on pp. 149, 4.6 on pp. 148, 4.4 and 4.5 on pp.
147 and 4.2 on pp. 145. In these micrographs the lamellae tend to stack into fibrillar
structures. The stacking period is usualy extremely regular and this period is caled the
long period of the crystallites.

| | 1 Long Peiod
| |

| |
|

|

<4—— Amorphous

| «—— Qydalline
|

The long period is so regular that diffraction occurs from regularly spaced lamellae a very small
angles using x-rays. Small-angle x-ray scattering is a primary technique to describe the
colloidal scale structure of such stacked lamellae. The lamellae are 2-d objects so a small
angle pattern is multiplied by g2 to remove this dimensionality (Lorentzian correction) and

the peak position in g is measured, g*. g= 417\ sin(6/2), where 8 is the scattering angle.

Bragg's law can be used to determine the long period, L = 21/g*. Figure 4.8 on pp. 151
shows such Lorentzian corrected data. The peak occurs a about 0.2 degrees! In some
cases the x-ray data has been Fourier transformed to obtain a correlation function for the
lamellae which indicate an average lamellar profile as shown in figure 4.9 pp. 152.

The degree of stacking of lamellae would appear to be a direct function of the density of
crystallization, i.e. in lower crystallinity systems stacking is less prominent, and the extent
of entanglement of the polymer chains in the melt. You can think of lamellar stacking as
resulting from areeling in of the lamellae as chains which bridge different lamellae further
crystallize as well as a consequence of spatia constraintsin densely crystallized systems.

In melt crystallized systems, many lamellar stacks tend to nucleate from a single nucleation site and
grow radially out until they impinge on other lamellar stacks growing from other nucleation
sites. The lamdlar stacks have a dominant direction of growth, that is, they are lateraly
constrained in extent, so that they form ribbon like fibers. The latera constraint in melt
crystallized polymers is primarily a consequence of exclusion of impurities from the
growing crystallites.
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"Impurities’ include a number of things such as dirt, dust, chain segments of improper tacticity,
branched segments, end-groups and other chain features which can not crystallize a the
temperature of crystalization. Some of these "Impurities’ will crystalize a a lower
temperature so it is possible to have secondary crystallization occur in the interfibrillar
region. Despite the complexity of the "impurities’ it can be postulated that the impurities
display an average diffusion constant, D. The Fibrillar growth front displays a linear
growth rate, G. Fick'sfirst law states that the flux of amaterial, J, is equa to the negative

of the diffusion constant times the concentration gradient Ac/Ax. If we make an association
between the flux of impurities and the growth rate of the fibril then Fick's first law can be

used to associate a Size scale, Ax with the ratio of D/G. This approach can be used to

define a parameter o, which is known as the Keith and Padden d-parameter, & = D/G. This
rule implies that faster growth rate will lead to narrower fibrils. Also, the inclusion of high
molecular weight impurities, which have a high diffusion constant, D, leads to wider
fibrils. There is extensive, dbeit qualitative, data supporting the Keith and Padden del
parameter approach to describe the coarseness of spherulitic growth in this respect.

Branching of Fibrils: Dendrites versus Spherulites.

Low molecular weight materials such as water can grow in dendrite crystalline habits which in
some ways resemble polymer spherulites (collections of fibrillar crystallites which emerge
from anucleation site). One mgor quditative difference is that dendritic crystalline habits
are very loose structures while spherulitic structures, such as shown in Strobl, fill space in
dense branching. At first this difference might seem to be qualitative.
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In low-molecular weight materials such as snowflakes or ice crystalites branching aways occurs
along low index crystallographic planes (low Miller indices). In spherulitic growth there is
no relationship between the crystallographic planes and the direction of branching. It has
been proposed that this may be related to twinning phenomena or to epitaxial nucleation of
anew laméelar crystallite on the surface of an existing lamellae. A definitive reason for
non-crystallographic branching in polymer spherulites has not been determined but it
remains a distinguishing feature between spherulites and dendrites.

(Incidentally, the growth of dendrites can occur due to smilar impurity transport issues as the
growth of fibrillar habits in polymers. In some cases a smilar mechanism has been
proposed where rather than impurity diffusion, the asymmetric growth is caused by thermal
transport as heat is built up following the arrows in the diagram on the previous page.)

Non-crystallographic branching leads to the extremely dense fibrillar growth seen in figures 4.4 to
4.7 of Strobl. In the absence of non-crystallographic branching, many of the mechanical
properties of semi-crystalline polymers would not be possible. As was mentioned above,
non-crystallographic branching may be related to the high asymmetry and the associated
high surface area of the chain fold surface which serves as a likely site for nuclestion of
new lamellae as will be discussed in detall below in the context of Hoffman/Lauritzen
theory.

The formation of polymer spherulites requires two essential features as detailed
by Keith and Padden in 1964 from a wide range of micrographic studies:

1) Fibrillar growth habits.

2) Low angle, Non-crystallographic branching.

Polymer Spherulites.

Figure 4.2 pp. 145 shows atypical melt crystallize spherulitic structure which forms in most semi-
crystalline polymeric systems. The micrographs in figure 4.2 are taken between crossed
polars and the characteristic Maltese Cr oss is observed and described on the following
page. The Madtese cross is an indication of radia symmetry to the lamelae in the
spherulite, supporting fibrillar growth, low angle branching and nuclestion &t the center of
the spherulite. In some systems, especialy blends of non-crystallizable and crystallizable
polymers, extremely repetitive banding is observed in spherulites as a strong feature, figure
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4.7 pp. 149. Banding is especially prominent in tactic/atactic blends of polyesters and it is
in these systems in which it has been most studied. It has been proposed by Keith that
banding is related to regular twisting of lamellar bundles in the spherulite (circa 1980).
Keith has proposed that this twisting is induced by surface tension in the fold surface
caused by chain tilt in the lamellae (circa 1989). Since most spherulites crystallize in an
extremely dense manner it has been difficult to support Keith's hypothesis with
experimental data. Regular banding has, apparently, no consequences for the mechanical
properties of semi-crystalline polymers so has been essentially ignored in recent literature.

XRD of Polymers:
Four main features of XRD are of importance to Polymer Anaysis:

1) Indexing of Crystal Structures
2) Microstructure

3) Degree of Crystallinity

4) Orientation

1) Indexing of Crystal Structures: Indexing of crystal structures is smilar to the
descriptionsin Cullity and other metdlurgica texts. The main difference is that polymer crystals
can not be formed in perfect crystals, so single crystal or Laue patterns are not possible. Also,
polymer crystals tend to be of low symmetry, orthorhombic or lower symmetry, due to the
asymmetry in bonding of the crystalline lattice, i.e. the c-axisis bonded by covaent bonds and the
aand b axis are bonded by van der Wadls interactions or hydrogen bonds. Additionally, the unit
cell form factor tends to be fairly complicated in polymer crystals. Several unit cells for polymers
are shown below:

Figure -5 Arangement of molecular chains i onylon 66, paly(hesamaothylene
aclipamibde ). { B aned Garner [Bl.)

Nylon 66, from Alexander, " X-Ray Diffraction Methods in Polymer Science”
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Polybutadiene (PBD), from Alexander, "X-Ray Diffraction Methods in Polymer Science”

Figure 6-35  Unit cell of polylethylene uefigrute)
the molecilar chain. (Turner-Jones and Hunm [84]

ancl the twer possible ariemtotions of
]

Poly(ethylene adipate), a polyester, from Alexander, " X-Ray Diffraction Methods in Polymer
Science'

Lattice parameters in polymer crystals are strongly temperature dependent as shown in the
following diagram:
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From Bata-Callgaand VVonk, "X-ray Scattering of Synthetic Polymers’

Polymer lattice parameters are also dependent on strain as shown in the following diagram:
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Fig. 3.18. a- and b-lattice constanis of PE ax a function of draw ratio (Glenz &t
al.(47)repraduced with permission by John Wiley o Sons, publishers. |,

From Bata-Callgjaand Vonk, "X-ray Scattering of Synthetic Polymers"

Notice that the c-axis (covalent main chain bonds) is much less dependent on thermal or mechanical
strain.

Line widths are broad for polymer diffraction and a substantial amorphous peak is usually present.
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2) Microstructure:

Cullity deals with metallurgical crystals where crystalite sizes are typically larger than a micron.
With amonochromatic incident beam the diffraction pattern from a single crystal is a sequence of
spots where the Bragg condition is met for certain orientations of crystals (see"a' in figure below).
As the crystallite size becomes smaller, more crystallites meet the Bragg condition and the radial
orientation of these crystallites cover a broader spectrum of angles ("b" and "c" below), eventualy
forming Debye-Scherrer powder pattern rings ("c" below). If crystallite sizes approach 0.1 micron
(1000A), the Debye-Scherrer ring begins to broaden ("d" in figure below).

14
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From Cullity, "Elements of X-Ray Diffraction

Polymer crystals are on the order of 100A in thickness. Broadening of the diffraction lines due to
small crystalite size becomes a dominant effect and the breadth of the diffraction lines can be used
to measure the thickness of lamellar crystals using the Scherrer equation:

_ 094
Bcog(6)

A isthe x-ray wavelength, B isthe half width at half height for the diffraction peak in radiansand 6
is half of the diffraction angle. The Scherrer equation is derived in Cullity and other texts. Use of
the Scherrer equation is a primary technique to determine lamellar thicknessin polymer crystallites.
This can be used in conjunction with the Hoffman-Lauritzen (Gibbs-Thompson) equation for
studies of crystallization.

In addition to Scherrer broadening diffraction lines can be broadened in polymers due to defects in
the structure. This will not be covered in detail in this course but is described in Campbell and
White and in Alexander's text.

3) Degree of Crystallinity:

Polymers are never 100% crystaline since the stereochemistry is never perfect, chains contain

defects such as branches, and crystallization is highly rate dependent in polymers due to the high
viscosity and low transport rates in polymer melts. A primary use of XRD in polymers is
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determination of the degree of crystallinity. The DOC is determined by integration of a 1-d XRD
pattern such as that shown below for polyethylene.

110

Ci ' & (11}

i}

b

Fig. 3.3.Tvpical X-ray diffraction pattern of melt crystallized pn{va!hy!sna_
illustrating the separation of crystalling and non crystalling mraxima (Martinez
Salazar (1110

From Bata-Callgaand VVonk, "X-ray Scattering of Synthetic Polymers'

The determination of the degree of crystallinity implies use of atwo-phase modd, i.e. the sampleis
composed of crystals and amorphous and no regions of semi-crystaline organization. The
aternative to the two-phase model is a paracrystalline model which was popular in the early days
of polymer science. There are limits to the two-phase model, particularly for fairly disorganized
polymer crystalline systems such as polyacrylonitrile (PAN). Most polymer systems are amenable
to the two-phase model but you should keep in mind that the 2-phase model ignores interfacia
zones where the density may differ from that of the amorphous.

Theintegrated XRD intensity measures the volume fraction crystallinity, @.. Other techniques such
as density gradient columns (see Campbell and White or DSC) measure a mass fraction

crystalinity W.. The two fractions are related by the density ratios, where p, is the crystaline
density, p isthe bulk sample density and p, is the amorphous density,

TS 1)

p o

W
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If the density of the sample is known from a density gradient column, the weight fraction degree of
crystalinity can be obtained using:

p.Up-p, U
wc =

p Ho.-p.0
Determination of . from the XRD pattern under the 2-phase assumption involves separation the
diffraction pattern into three parts, 1) Crystalline; 2) Amorphous and 3) Compton Background
(Incoherent Scattering). The diffracted intensity if proportiona to the amount of each of these

contributions. Consider the 2-d diffraction pattern shown just above section 2) above. The 1-d
diffraction pattern isaline cut through this pattern as shown below:

2-d Diffraction Patter n

_» 1-d Slice of

o 2-d Pattern

q

The actual scattered intensity isrelated to avolume integral of the diffracted peak in the 2-d pattern,
V. O [1o(a)dV, = [a”l(a)da
0 0

Then the volume fraction degree of crystallinity is given by theratio of the integral of the crystalline
diffraction intensity over the total coherent scattering, i.e. after subtracting the incoherent
scattering:

j’qzlc(Q)dq

@ =
[ [1(@) = Icarpin(@)]

This procedure is called the Ruland method and is valid for:

1) Random crystallite orientation (Powder pattern)

2) 3-dcrystalline ordering

3) Vdidity of integrals for finite angles of measure, i.e. there is a point in angle where the
crystalinity is not significant to 1(q)

17



4) Crystalline peaks can be separated from the amorphous halo

The Ruland eguation can be modified for crystalline defects as described in Campbell and White
and Alexander. Usually the smple form given above is sufficient. The Ruland method is shown
in the figures below where 107 is plotted as a function of g (or ).

L =

w® fiap (alaciron units par A7)

Figure 33  Curve of 513§ versug s for polypropense sample Mo, 3, (Ruland [2].)
From Alexander, "X-Ray Diffraction Methods in Polymer Science’
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 Figure 3135 X-Ray seattering of u partially crystalline isatactic polystyrene
- specimen (Challa, Hermans, lﬂmr':rﬂﬂ.] bol

From Alexander, "X-Ray Diffraction Methods in Polymer Science’

4) Orientation:

Orientation is covered in the later chapters of metallurgical diffraction texts such as Cullity (see
figure below).




From Cullity, "Elements of X-Ray Diffraction

Orientation isamore dominant effect in polymer samples especially processed plastics (see figure
below). Orientation is a dominant feature in control of the mechanical and physical properties of
polymers.

T A

o

3% o
From Tadmor and Gogos, "Principles of Polymer Processing"
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Figure 3-14  Frecession photographs of an oriented polyethylene specimen ont in the
shape uf o small mmnwﬂmhamu#wﬂhﬂ“w“
lettering of cube faces and patterns, Exposure | hr with nickel-Ghered CoKe raciation,
A5 kVp, 15 mA; precession angle 307, 20 laver-line soreen 34.6 num from specimesn.
(Conrtesy of E- . Clark and E. 1 du. Font de Nemours and Company. Inc.)

From Alexander, " X-Ray Diffraction Methods in Polymer Science
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Figure |- Filr patters prepared with fiber axis vertioal) (o) S-poly-L-alanine
[Bamdord et al, Nobwre, 173, 27 (08541, () natural silk [Astbury, Endegcor, 1, Tib
(RS (o) polviethylens terephthalste) (Conrtesy of L Mutsubora and 5. 5, Polleck)

il |||:n|!.|| nabesbios (Coir ey sl 5.5 Follack)

From Alexander, "X-Ray Diffraction Methods in Polymer Science"

There are a number of techniques for the quantification of orientation from diffraction data. Cullity
describes the use of stereographic projections on a Wulff Net (shown below left). The Wulff net is
useful if single crystals are studied and it isdesired to determine the orientation with respect to the
diffraction experiment such as in orientation of semi-conductor samples for cleavage. In most
polymer applicationsit is desired to determine the distributions of orientation for a polycrystalline
sample with respect to processing directions such as the direction of extrusion, (machine direction
MD), the cross direction (CD) and the sample normal direction (ND). A more useful stereographic
projection for these purposes is the polar net or pole figure (shown below right).
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Figure 47 Moridional aiersagrmphic net (G, §. Dacrett, Stracture of Mesals, 20d ed. Figure 46 Tolo stereographic net (O, 5. Barrett, Etructure of Meioly, 2o ed,
MeCriw-Hill, New Yerk, 19520 : BoCraw-HllL Mew York, 1552

From Alexander, "X-Ray Diffraction Methods in Polymer Science"

The polefigure is a dice across the equator of the sphere of projection with the MD usually defined
a the top of the pole figure and either the CD or ND as the right side. Normals to planes are
projected from the south pole to the point of intersection on the sphere of projection and where they
cross the equatorial plane a point is plotted on the pole figure. A typica polar figure for a
processed polymer is shown in the figure below for the (110) and (020) normals for the
polyethylene orthorhombic crystalline structure. Notice that the plane normals appear as a
topographical plot since there is a distribution in orientation. The (110) and (020) reflections are
the two dominant peaks in the 1-d diffraction pattern for PE shown above (start of section 3).
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{10 POLE

020} POLE

Fig 614, Pale figure for a heavily rolled polyethylene sample, as recorded by Le-
wis et al.(29). The contour lines are drawn at equal intensity inrervals. Positions of
the maxima calculated for the original and the twinmed serocrere are indicated by
open and filled triangles respectively, (Reprinted by permrizsion of the publishers

fohn Wiley a*Sons, Inc |

From Balta-Callgaand Vonk, "X-ray Scattering of Synthetic Polymers"

The following figure shows the type of qualitative analysis of orientation which can be performed
using pole figures. Generally, pole figures are constructed by computer software which is part of
adiffractometer capable of measurement of pole figures such as the Siemens D-500.
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From Alexander, "X-Ray Diffraction Methodsin Polymer Science"
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Fignre 43  Claszificasion of oricntstion medes. and Huetan [<].1

The pole figure can give a qudlitative picture of orientation in a polymer sample. Quantitative
measures of orientation can be obtained by considering aradial plot of diffraction data.

2-d Diffraction Patter n

MD

/_\(p

TD

0 ¢

360

Theintensity for agiven diffraction line (given 20) has two peaks as a function of radial angle, @
reflecting the two normals to the diffraction plane relative to the MD/TD plane. The Hermans

orientation function can be caculated for a given plane from the ¢ dependence of the diffracted

intensity:
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fuio) = %(3(0052 ) - 1)

where <cos’@> is the average cosine squared weighted by the intensity as a function of the radial
angle for the (110) plane. The Hermans orientation function has the behavior that f = 1

corresponds to perfect orientation in the ¢ = 0 direction, f = O for random orientation and f = -1/2

for perfect orientation normal to the ¢ = O direction. If the orientation function is caculate for
orthogonal axis such asthe a, b, and c unit cell directions for the PE unit cdl then f, + f, + f_ = 0.
The orientation function for the unit cell vectors can be determined from geometry if the angular

relationship between a plane normal and the unit cell direction is known. <cos’@> is calculated by:
T
[1(8110)) singpoos” gl
(c0S" Puyg)) =2 A
[1(@60))singele
0

The figure below shows the behavior of the Hermans orientation function for the three unit cdll
directions in PE as afunction of processing conditions in afiber spinning process.
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oz
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0.2

Crystallire ociantation Furchan

aar
i 100 200 300 4D0 HDO GO0
Takeup welpeciy Imifmeni

Fig. A28 Crysalline onentation <functions
versus lakeup wveloaty developed during meli
spinning of HDPFE: polvmer Aow rate. 1,93+
002 gfmin; cxirusion tempecature, 307 & 390,
|Reprinted with permission from 1, E. Spruiell
and 1. L. White, Palyrm. Eng. Sei, 15,660 (19751,

From Tadmor and Gogos, "Principles of Polymer Processing"

The orientation function is directly related to polymer properties as shown in the example below.
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Fig. 3.2%  Efleeral FET arizoration 2nd erystallmity
on the residual cxension rato afeer shrinkage
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Samuels, Seapteeed Polpmess, Wisy, Mew York,
1474.]

From Tadmor and Gogos, "Principles of Polymer Processing"
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