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Figure 6.1 The molar enthalpy of formation of NaCl as a function of the cube edge a of the
NaCl crystal cubes.



AH/P = AHr ¥ + o1/ Surfaces impact the free energy

= AHb + o/r
_300 I I L | L
It takes energy to
. form surfaces
=330} g .
I P .
Tg' 3 Small particles
iy : dissolve easier
~ =360 r g &
f ’ There are limits to
T 390} i grinding, fine
powdered sugar;
about 50pum
0.01 0.1 1 10 100 1000

al/ um

Figure 6.1 The molar enthalpy of formation of NaCl as a function of the cube edge a of the
NaCl crystal cubes.



C. Knieke et al. /| Powder Technology 195 (2009) 25-30

800

8

E
L
[+4]
N
® 400
o
Q
t

200 tm ENT=1000KV  WO= 6mm niens  gn —C
Mag = 137,90 K X ref to Polarold S48 30 Mar 2000 7 5

 —

Aggregates versus
primary particles

® "% o0 «=—— apparent grinding limit

o ¢ prmary particle sze (BET)
0 panice sze 503 (DLS)
-
0
“
© o
-
* . Seannai
! | e - true grinding limit
10t 10° 10°
specific energy input [kJ/kg]

Fig. 3. SEM picture of quartz particles after grinding for 50 h.

Fg. 2. Distinction between apparent and true grinding limit.



Nitrogen (or Argon) adsorption
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FIG. 9.3 Schematic illustration of a gas adsorption apparatus.
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Liquid-gas or solid-gas interface is called a surface
For surfaces we define a surface tension, o, energy/area

Liquid/liquid or solid/liquid or solid/solid is just called an interface
For interfaces we define the interfacial energy, vy, energy/area

Gibbs Surface
/_\/ /—\/
¢ B
% /\—4
B o Gibbs dividing
surface X
/\/ /\/

(a) (b)

Figure 6.2 (a) Illustration of a real physical interface between two homogeneous phases o
and f. (b) The hypothetical Gibbs dividing surface X.




Adsorption (not Absorption) see video

Surface Excess Moles

II? =Nn;

O
i~ N

Adsorption of 1

Surface Excess I

p

—n.

l

The adsorption of
There could be surface excess
I'; can be positive or negative

o

(a)

33D
1

U° =U-U*-uP

Surface Excess Properties

SO g 5% _gP

Ve =v-v*_vF-o

(b)

733D
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or surface depletion of

Gibbs dividing
surface X

7330
1


https://www.eng.uc.edu/~beaucag/Classes/AdvancedMaterialsThermodynamics/view_video.html?id=XWaDXanE1WA

What is the change in internal energy by introduction of a surface?

-SUV

dU =TdS - pdV + Z,u,-dn,- _I;G?

I
V doesn’tchange [/ =7dS + Z U, d”i &
i dU% =TdS® + )_p;dn?
Surface excess dU° =dU —-dU ¥ _dUﬁ C
dUP =Tds? + Zl‘id”,p

i=1

C
dU® =T(dS —dS% —-dS /j) + Z,u,-(dn,- - dnfx - dnl./j)

i=1

C
o 100 o
dU™ =TdS "™ + Z Midn i Surface Excess

i=1



Two additional contributions to the surface energy

1) Surface Area and 2) Curvature Energy Terms, ¢, = 1/ry, ¢, = 1/r,

u

If the thickness is much smaller than r you can ignore curvature

O _ 00 o o
al™ =1d§ "™ + Z“i dn  +0dA
(&5 ' 5
dU% =1dS” + Z,u,-dn;l -p%dv?
- Figure 6.3 Illustration of the curvature of a geometrical surface.
c
dUuP =1dsP + Z,u,dn{j - /)/jdV/‘
i=1
dU =T(dS® +dS®* +dsP)
+iy/(du? + dn? + dn’ﬁ)~ p%dv ¥ ~pﬁdV/j +0dA For V/L or V/S
i=
S o o BB
dU =TdS +Z;l,-du,- —p dV7T = p"dV" +odA,
i=1
A
Definition of Surface Tension O = ou Enthalpic Term
Surface Tension CAg g yoyB .
A - - - l



Derive Laplace Equation
Curved Interface (Laplace Equation pg,, ~ /r)

Force/Area x Distance = Energy/Area

oo _ P _ o o _, p_ ., 0
7% =7 =1 u’ =ul = u
Pressure reaches equilibrium

dU =—p%dv“ —pﬁdvﬁ +0dA,

df dA, = 0 for flat surface

dv® = A.dl =—-dVP

| oL For a sphere A =4w/3 r2:: dA =87/3 r dr
dAs =(_(‘| +Cy )/\Sdl /dIT\ ¢=1/r so dA=2A/r dr = 2Acdr
B itdr=dl dA=2cAdl

dU :(_pﬁ - pa JAdl +0(c) +cy)Adl = [(_p[j - pa )+0(c) +c¢y)]ALd]

Change in internal energy is proportional to the change in interfacial width



dU =[(pP = p®) + 0(c; +¢)]A dl
1 }_‘aplace Equation
10° 4 for a water droplet
Atequilibrium(dU) g v, =0. ol romam
R = E 3
Eh ]
g 10E 1 pm 1 mm
[ 1 S
1)/3—1’0' =0(c) +¢)=0| —+— 1 iam
r b) 10 ' N
Laplace Equation T e

For a 100 nm (le c¢m) droplet of water in air (72 €7 J/cm? or 7.2 Pa-cm)
Pressure is 720 MPa (7,200 Atmospheres)

10



For S/S, S/L, L/L

Solid interface in a 1-component system
-SUV

H A
dG =-8dT +Vdp + ydA -pGT

dWy , =ydAg  Work to create the interface
Interfacial energy, y

Surface creation always has an energy penalty.

v 1is always positive

Nano-particles are unstable (increase in free energy with a surface)

Differences in surface energy for different crystal surfaces leads to fibrous or lamellar crystals

11



Gibbs-Wulff Theorem
Crystal surface energy ~ number of bonds * bond energy
Density of bonds decreases with Miller Indices

FCC Nearest Neighbors Number of bonds (Each pair share a bond)
[111] 6 3
[110] 12 6
[100] 8 4

Liquid droplets minimize surface area for a given volume
and the face vis &, . If astraight line is drawn from O to each corner of the body, the
crystal will be divided into N pyramids of height &, base A, and volume V2A h,. SO, Spheres form

Using a similar analysis, the volume of a three-dimensional crystal can be
expressed as

v-i$am, 633) At high temperatures crystalline solids also form spheres
- Because surface energy becomes less important

For a reversible change at constant temperature and volume of both phases and

for a constant number of moles of the components, the equilibrium shape can be

. BN .
Consider a crystal with constant volume V = Z A, h, with N facets.

=]

Draw a vector from the center of a crystal to a face, 4,,.

Figure 6.4 Geometric parameters describing a two-dimensional crystal

12



Wulff Construction

O is area

Surface excess energy AG; = Z v;O;
7 v surface energy

Draw a vector from the center of a crystal to a face.
Gibbs-Wulff Theorem states that the length of the vector is proportional to the surface energy
hj=%y; Higher energy surfaces grow preferentially (A is a constant)

Minimization to find the lowest free energy 5(2 71-01-) = 76(0j)v, =0
J V. J

1
h; O is proportional to the volume of a facet so for constant volume: (Vo)v, = 55 (Z hj0j> =)
J 1%

c

> hid(05)v. + D 0;8(hi)v. =0 And for constant volume:  016(h)v, + Os8(hs)y, + ... =0
J J

Z hJ(S(OJ)VL =0 And Z’)’J‘S(O])VL =0
j J

So: (ki —X1)0;)v. =0 And  hj = Ay

J

R. F. Strickland-Constable: Kinetics and Mechanism of Crystallization, page 77, Academic Press, 1968.

Diffusion rates and twinning can alter the crystal shape for large crystals 13



. o Pressure difference for solid crystal facets
dG =-8dT +Vdp + ydA

Isothermal p% - pﬁ =2 3/—' =2 3/—‘ =,,, =2 ;/— (Force/length)/length = Force/Area
1] 1, 1N

Equilibrium
vdA/V =2yd(1/h) = -dp

replace y,/h, with y/r for near-spherical crystals

Laplace Equation

pﬁ —pa =0(c; +cy)=0 L+L
= ’-I ’.2

14



Periodic Table Groups and Periods

Agroup is a column on the periodic table. Elements have the same number of valence electrons.
Aperiod is a row on the periodic table. Elements have the same number of electron shells.

There are 7 periods.
) Th 18 =)
L ere are roups 2
1| H g p i He
Hydragen Helium
R 200_J 2 13 14 15 16 7 L
pr— r \ [ N N\ N 7 N
3 Li AB 5 B 6 C 7 N 8 0 9 E 1<|>\I
2 |
Lithium w"?m Boron Carbon Nitrogen Oxygen Fluorine Mﬂe
6.941 9,012 wen J|_12on | 1007 J| 159es )| 1sses J| 20180 )
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3 | r
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Periodic Table Groups and Periods

Agroup is a column on the periodic table. Elements have the same number of valence electrons.
Aperi

is arow on the periodic table. Elements have the same numibeis of electron shells.
2 13 14 1S 16 17
There are 7[-%+ods. 2
1 R i 4 &€ 1 & 9 10 2 3p N
1 ] The y o ;
1| H 55+ & 5p He
Hydragen Helium
1.008 s of 5d 60 15 16 7 2003
(3 |[a 7 s e 7 (8 1( 9 (w0 )
2| Li | BE= 2 ‘ - N || 0|l F [ Ne
e )| “sAsblock f-block d-block U satiodes e JL o e Jla.
n 12 B |[a_, [ (16 (17 .|
3| Na | Mg Al Si P S Cl Ar
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Figure 6.5 Periodic trends in the surface tension of selected liquid elements in periods 2—6
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at their melting temperature [8].
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Group of periodic table

H
; Group 6
Li Be  Group6isa group of transition metal elements. The aufbau principle predicts that they will
3 4 each have a valence electron configuration of d*s2. However, chromium and molybdenum
are exceptions to this rule and have a valence electron configuration of d%!.
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Strength of bonding impacts surface tension
d-block transition metals have strong bonds

4 T T T
7%= 0,067 + 00157, Hyn Vi

7€ and ' / kI m2
(3%}

0820063+ 0.021A,,,H,/V,2?

vap

1 1

0 50 100 150 200
2

213 2
AvapHme / k‘I cm

Figure 6.6 Surface tension of the liquid elements at Ty, o'® (open squares), and surface
energy of the solid elements at 0 K, y58 (filled circles), versus A H V_“/' [8].
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Table 6.1 Surface tension or average sur-
face energy of some solid and liquid sub-
stances [12, 13].

Substance olg /] m-2 & 1
NaCl() (1000 °C) 0.098 o 20 ]
|
Al O5(1) (2050 °C) 0.69 =
Si05(1) (1800 °C) 0.307 2. 13 -
P>,0s(1) (100 °C) 0.06 S
Cu,S(1) (1200 °C) 0.4 1.0 T
NiS() (1200 °C) 0.577 0.5
PbS(1)(1200 °C) 0.2 ' ; . . . . .
Sb,S5(1) (1200 °C) 0.094 150 200 250 300 350 400 450 500 550
H,0(1) (25 °C) 0.072 T V8K e
ysel) m2 - g . B S
igure 6.7 Average grain boundary energy, y2°, surface energy of crystals at 0 K, Y% and
LiF(s) (25 °C) 0.34 surface tension ¢ !¢ of liquid Al, Ag, Au, Ni and Pt as a function of melting temperature
-2/3
CaF(s) (25 °C) 0.45 TV~ 7 [8, 11].
NaCl(s) (25 °C) 0.227

MgO(s) (25 °C) 1.2
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Figure 6.8 Surface tension of fused salts as a function of melting temperature normalized
; = 2/3
with the molar volume 7', Vi, 3114, 15].

Empirical relationship for the temperature dependence, entropy at interface is high, n ~ 1.2 for metals.
s X
lg g l / For a liquid with its own vapor
O~ =0, - / ’ Reminiscent of AG = AH(1-T/T")
C

Liquid/Vapor surface
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From Hiemenz’s Book

252 HIEMENZ AND RAJAGOPALAN

Force to increase a 2d film area

¢ . You apply the force to the the side / and the opposite
[ 1) side I so 2. F~2lor F/(2]) =7
cf \,D dx

Liquid

a b

\;\

FIG. 6.2 lllustrations of liquid film formation, contact angle, and measurement of contact angle:
(a) a wire loop with a slide wire on which a liquid film might be formed and stretched by an applied
force F. (b) profile of a three-phase (solid, liquid, gas) boundary that defines the contact angle 6.
(¢) the tilted plate method for measuring contact angles.

20



w = Pycosf w-Force
P = Wetted Perimeter

= ! t = Thickness
P A6 + 0 1 = Plate Length

6

Liquid

A

Wilhelmy Plate

a

l

27Ry cos 0 = xR hApg

Perimeter gamma cos6= mgh

RS .2

cosf  Apg
d S

Jurin’s Law
h
—
Y R
Capillary Rise

b

FIG. 6.3 Surface tension and capillary rise: (a) the Wilhelmy plate method for measuring v; (b)
schematic illustration of capillary rise in a cylindrical tube of radius R..
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Jurin’s Law

1) Atmospheric Pressure above, Liquid pressure below
Laplace law indicates
Ap = 26/r where r is ro/cos0 if the meniscus is circular

2) Pressure in the tube follows p = p, - pgh where pg is
atmospheric pressure (hydrostatic pressure)

3) At equilibrium pgh = 26 cosb / r (h 27
So, h =26 cosO /(pg ro) — R —
cost Apg
300 \ ] ‘

p=1000kg/m® ———
\ g=9.81m/s?

= ~
G S
3 3

Water Height (mm)

@
3

~—

R S

)

0,0 03 05 038 1,0 13 15 18 2,0

Capillary Diameter (mm) 22



sions as forces acting along the perimeter of the drop enables us to write immediately an
equation that describes the equilibrium force balance in the horizontal direction:

Yv€0s 0 = y5p = vg Young-Dupré Equation (44)

FIG. 6.6 Components of interfacial tension needed to derive Young's equation.

Equation (6.39) was first derived by Young, and is often referred to as the
Young-Dupré equation. We usually distinguish between full (6< 90°) and partial
wetting (6>90° and an alternative measure of the same property is given by the
wetting coefficient:

sg _ .9
k=Y""7 _cos0 (6.40)
o's 23



solid

Figure 6.10 Contactangle 6 of aliquid drop resting on a solid surface. The definition of the
forces used in the figure eliminates the contribution from gravity.

=4{) Young-Dupre Equation



,B o (xlit ofp

t is the tangent vector
along the surface at the
point of contact, to is a
force in the tangent
direction

O.(IZt(I)_’

Figure 6.9 Two-dimensional projection of equilibrium at a plane of contact between three
phases «, 3 and y where the ungljcs between the three two-phase boundaries meeting in a
line of contact are denoted 6%, 6" and 0%,
Larger angle means

smaller displacement t, t
ot L o PXPX | 627X =0 P

a=p2 ~ 1/sin(0)

o off o Bx o oy 0
Y Y This defines the observed angles in a
sin 6 sin 6 sin 6 micrograph in terms of the surface

sinA sinB  sinC ) ]
- tension for the various phases

a b ¢

Law of sines
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a

B

Figure 3: Coexistence of three fluid o
phases in mutual contact; here, a, B,
and 6 each indicate both a phase and
its contact angle.

Take the o, 0 line as the vector direction then

120 + y9Bcos(0) + yPrcos(a) = 0 using the dot product of the vectors
For the 0, B line as the vector direction then

1*9cos(0) + y9B + y*Bcos(B) = 0 using the dot product of the vectors
For the a, B line as the vector direction then

v*Ocos(a) + y?Pcos(B) + y*P = 0 using the dot product of the vectors

*. Vi B is a flat rigid surface, B =7
y*%cos(0) + v + y*Peos(B) = 0

vBlcos(0) + y's-y8 =0

Figure 5: Contact angle of a liquid droplet wetted = S = YLG (COS(B ) — ].)
to a rigid solid surface

Three phases and three angles
Define the phase by the angle

3 equations and
3 unknowns

You can solve for
three interfacial
tensions

S =vse¢ — (vs +71c) Spreading Parameter: S>0 wets; S<O partially wets
For S<0

26



(b)

Dihedral Angle “
(04
o 180°
(04
Yo% _2y% cos(%)zO o
* 135°
o
(04
o 0°

Figure 6.11 (a) Definition of the dihedral angle, ¢, at a junction of three grain boundaries
in a polycrystalline solid. (b) Schematic illustration of the shape of an inclusion phase for
different dihedral angles.
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Dihedral Angle in Microscopy

y% 2y cos % =0

solid grain A solid grain B solid grain A solid grain B

Figure 6.12 Grain boundary after polishing (a) and after the subsequent thermal etching
(b).

Figure 6.13 Surface of thermally etched Lag 5Srg sFeq 5Cog 503, a polycrystalline
ceramic material .
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How do you make small particles? (Nanoparticles)

0

pZn/ P7zn

0.01 0.1

r/ um

Figure 6.14 The vapour pressure of Zn over a spherical droplet of molten Zn at the melting
210~ bar, 01 =0.78 Im~2 and p =

temperature as a function of the droplet radius. py, =
6.58 ¢ cm™3 [8].

1 10

-SUV

H A

-pGT

Thomson’s (or Kelvin’s) equation

Pressure for equilibrium of a liquid droplet of size r”

du' =du®  Reversible equilibrium

At constant temperature
dp' =V&/V! dpe

VEdp® = Vldpl

208

d(,,g,,'):d[ ; ] Differential Laplace equation

g _yl 2018
4 IV d[)g—d[_a

vV £

vE=RrT/pE  vE_ylaye
v il 118

ﬁdpv anff 20

V' p® r

Small drops evaporate, large drops grow
Large excursions away form the
equilibrium pressure makes nanopartjcles
(deep quench far from equilibrium) :



Initial Bubbles on Boiling -SUV
H A

In the absence of nuclei, the initial bubbles on boiling can be very small GT
-p

These bubbles are unstable due to high pressure so boiling can be prevented leading to a superheated fluid

~SEdT +VEdpE =-5'ar  Equilibrium
g8 _rcg _ olyqr o 1. dT
Vedp® =(S° -S)H)AT =(H® -H ) —

dr R dp®

= Ideal gas

T4 A vapHm Pt
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Figure 6.15 The boiling temperature of Na as a function of the radius of a vapour bubble
surrounded by molten Na. AyypHm = 101.3 kJ mol~! and 6'€ = 0.19 J m~2 [8]. 30



Ostwald-Freundlich Equation
Solubility and Size, r

Consider a particle of size r; in a solution of concentration x; with activity a;

A a8l
d(p® - ph —d[ “}; ] Derivative form of the Laplace equation p” - p% =o(c, +¢,) = 0'[ L i]
,‘l ’.2. /
-SUV s : ey
du' =du’ =vidp® =vd 2Y Dynamic equilibrium
H A i i I i r
-pGT |
2y° . . .
WDy =)y =V} td For an incompressible solid phase
P
Ha =Ha +RT Inay Definition of activity
(.\'I.l )y VI.“ 2}," o . '
In S Solubility increases exponentially with

reduction in size, r

Small particles dissolve to build large particles
N = (x! I
(Xi')r = (X{")r=e0 €XP(2y°!/(PRT 1)) with lower solubility

-To obtain nanoparticles you need to supersaturate to a high concentration (far from equilibrium).
-Low surface energy favors nanoparticles. (Such as at high temperatures)
-High temperature and high solid density favor nanoparticles.

Supersaturation is required for any nucleation One form of the Gibbs-Thompson Equation




Ostwald Ripening

Dissolution/precipitation mechanism for grain growth
Consider small and large grains in contact with a solution

(1“7)/’ _()u;)l" :2\/;}/31 -,

r r

Grain Growth and Elimination of Pores

-10}

=20

Ap/kJ mol™

73() 1 " 1 1
1073 1072 107! 10° 10!

r/um
Figure 6.17 The difference in the chemical potential of Au(s) between a spherical particle

with radius 10 um and a smaller particle withradius r. p =18.4 g em~3 and y“] =138 m™2
[21].

P

B

- 1)“ =0(c +¢‘2):O'[

PV=np

|

—_ 4 —

r

32

1

n

|



Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

Bulk decreases free energy

. 4 3 . 2
Al_s(;:——m" ﬂ fus(1m+47tr"}/

} Surface increases free energy

sl
(M/p) is molar volume

dA,_.G | :
— = = _47”.2 e AtusGm + 8mry .
dr M ‘

(a) 1000 T 1 v : 1 (b) 1.0 T v
T/ Tyys= 0.95
maximum dA l_gG/d,- =() Barrier energy for nucleation at the ool
‘ critical nucleus size beyond which . 05
. = 10 E
growth is spontaneous I g
2 ] 0.1k g 00 F
1 A EJ
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0.00 0.02 0.04 0.06 0.08

sI\3 142 .
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A G*=
l 2 ~ 2 Figure 6.16 (a) The critical radius (r*) and thermodynamic barrier for nucleation of Al

3 p A t . (J (AG*) versus degree of supercooling 7/Ty. (b) The Gibbs energy of a spherical Al crystal

us m relative to the supercooled Al(l) as a function of its radius. AfysHm = 10.794 kJ mol-1, Ttus

=93347Kand p=2.55¢g cm™3 [8].



Homogeneous (assume a sphere of radius r)

4
AGhomo = ?r3AGV + 4nr?y

dAG
homo
———— =0 = 4nr*2AGy, + 8nr*y
dr
4
homo —
AG,
AG? _ 4n8y3 | 4m4y® _ somy3 _ 20mY TR mo
homo 3762 " AGy%2  3AGy? 3

Critical Nucleus and Activation
Energy for Crystalline
Nucleation (Gibbs)

Heterogeneous (assume a disk of radius r, thickness t nucleating on the same material)

AGhetero = Mtr?AG, + 2mrty

dAG
hetero
——F— =0 = 2ntr*AGy + 2mty
dr
*
r* _ 14 _ Thomo
hetero — -
AG, 2
AG? _ nty?  2mty? _ 3mty? _ ItAGYAGHomo _ 3TtYThomo __ o
hetero aq, ' AGy  AGy 80y 2 407} o mo
* _ ot *
AGhetero_ 807 e AGhomo
etero

—— &1 and =< 150 AGjerero < AGhomo

Thetero

*
Ghomo
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Critical Nucleus and Activation Energy for Crystalline Nucleation (Gibbs)

9 )
3P- A t'us(’ m

r=[2(M/p)y Y 1/A 4G A G*=

Lower T leads to larger A, G, (Driving force for crystallization)

AfusGm = AfysHm - TAgusSm
smaller r* and smaller A G*

(a) 1000 T T T T 1 (b) 1.0 v
T/ Tiys= 0.95
100 ¢
0.5
% ol Deep quench, far from
3 Fls 3 9y equilibrium leads to
3 1015 35 00F .
5 E S nanoparticles
< 01 =
-0.5+
0.01}
,_ 4 _23 : 2.8
) | S — 0.01 -10 ' ' Al_sG=—=nr v A fusGm +4ar” ysl
i).‘)() 092 094 096 098 1.00 0.00 0.02 0.04 0.06 0.08 3 M
T/ Tiys r/um

Figure 6.16 (a) The critical radius (r*) and thermodynamic barrier for nucleation of Al
(AG*) versus degree of supercooling 7/Ty. (b) The Gibbs energy of a spherical Al crystal
relative to the supercooled Al(1) as a function of its radius. AgysHm = 10.794 kJ mol~!, Ty
=93347Kand p=2.55¢g cm—3 [8].

One form of the Gibbs-Thompson Equa‘gtion



Third form of the Gibbs-Thompson Equation

BYT .
r= Third form of GT Equation/ Hoffman-Lauritzen Equation
AH f (T‘A o T) B is a geometric factor from 2 to 6
AH Crystallize from a melt, so supersaturate by a deep quench
AS = T At equilibrium for an infinite crystal (r = =) Af=0=AH - TAS so AS = AH/T.,

oo

For a small crystal of size “r” at “equilibrium”

Free energy of a
T ) AH ; ) crystal formed a
Af =0 ~ r'{AH, = AH, \-Briy=r —Ti (I.-T)-Bry oot

temperature T

Small particles at

r= B'YT“,/ (AH(Too'T)) deep quench
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Heterogeneous versus Homogeneous Nucleation

r
A diagram featuring all of the &
factors that affect heterogeneous
nucleation

AG™ = f(B)AG™™,  f(6) =

AG

A B C S
Three droplets on a surface, o

illustrating decreasing contact angles.
The contact angle the droplet surface
makes with the solid horizontal
surface decreases from left to right.

2 — 3cosf + cos® 0
4

Difference in energy barriers



Formation of a surface nucleus versus a bulk nucleus from n monomers

Homogeneous

AG,=-nd+vy,

Wu = “n - ””ll

X,

¢=u—um=kT1r{'—"]

L ) )
v, =ay= y[@*— ] n’ =\;m:
Bulk vs n-mer

So, surface excess chemical potential

AG, =—On +yn

> I

Heterogeneous (Surface Patch)
’ 4 ’
AGn' o _¢” +"I" n

v, =2nrhy=2ymhvp’ :\gl'n'_2

Surface energy from the sides of the patch

po I—

AG. =—0on"+y'n’




Barrier is half the height for surface nucleation
Stable size is half the size

oY [ 5]

4 3 L * ’2 ’ & iR
AGH = \y::\un :¢n AG'*zW _Yvn =¢n,*=n'lnly
270 3 2 40 2
e £Y_‘.L & £ Il,*l’l W
re= =21 r*= =

39




Adamson Physical Chemistry of Surfaces pp. 328 Classical Nucleation Theory

24T]l‘l—ll|l1lll

=
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lll_LL,J J_ll

rllnl4lllllnl|
O 2 4 6 8 10 12 14

Radius of nucleus, A

Fig. IX-1. Variation of AG with droplet size for water vapor at 0°C at four times the
saturation pressure. (From Ref. 2.)



AG = —n Ap + dxr’y (IX-1)

condensation AGcong = —nAp = ~nkTIn —P%- =-nkTIn x (IX-2)

where P’ is the pressure or activity of the liquid phase. The number of
molecules in the cluster is related to its size

n= 4—3” b (IX-3)
327y}
¢ = —ap—— IX-4
ne = 32 AR (IX-4)
~16my? dwrky
ACma = S3Tap? = 3
P (IX-5)

(IX-6)

41



The final equation obtained by Becker and Doring may be written down
immediately by means of the following qualitative argument. Since the flux /
is taken to be the same for any size nucleus, it follows that it is related to the
rate of formation of a cluster of two molecules, that is, to Z, the gas kinetic
collision frequency (collisions per cubic centimeter-second).

For the steady-state case, Z should also give the forward rate of formation
or flux of critical nuclei, except that the positive free energy of their formation
amounts to a free energy of activation. If one correspondingly modifies the rate
Z by the term ¢~ 49mu/kT an approximate value for 7 results:

Growth rate I is related to ~AG max
collisions Z and Boltzmann [ =Zexp kT (I1X-7)
probability

While Becker and Doring obtained a more complex function in place of Z, its
numerical value is about equal to Z, and it turns out that the exponential term,
which is the same, is the most important one. Thus the complete expression is

= Z AGmax e _AGmax
i n ( 3xkT ) P T (el

where n. is the number of molecules in the critical nucleus. The quantity
(1/n N AGmax/37k T)'/? has been called the Zeldovich factor (8, 9).
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The case of nucleation from a condensed phase, usually that of a melt, may
be treated similarly. The chief modification to Eq. IX-7 that ensues is in the
frequency factor; instead of free collisions between vapor molecules, one now
has a closely packed liquid phase. The rate of accretion of clusters is there-
fore related to the diffusion process, and the situation was treated by Turnbull
and Fisher [13]. Again, the reader is referred to the original literature for the
detailed derivation, and the final equation is justified here only in terms of a
qualitative argument. If one considers a crystalline nucleus that has formed in
a supercooled melt, then the rate at which an additional molecule may add can
be regarded as determined by the frequency with which a molecule may jump
from one position in the liquid to another just at the surface of the solid. Such a
jump is akin to those involved in diffusion, and the frequency may be approx-
imated by means of absolute rate theory as being equal to the frequency factor
kT/h times an exponential factor containing the free energy of activation for
diffusion. The total rate of such occurrences per cubic centimeter of liquid is

kT AGp
Z-nTcxp (— kT ) (IX-14)

where n is the number of molecules of liquid per cubic centimeter. The steady-
state treatment is again used, and the final result is analogous to Eq. IX-7:

” kT AGp AGmx
I=n P exp( tT )exp(— iT ) (IX-15)
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Three forms of the Gibbs-Thompson Equation

Ostwald-Freundlich Equation .
( 2v 'Y x = supersaturated mole fraction
X =X_6€eXx —L X. = equilibrium mole fraction
p\ rkT

v, = the molar volume
. Free energy of formation for an n-mer
AG = —nd +YA .
nanoparticle from a supersaturated

solution at T

X \
O =u—uU_=kTIn] — . . | |
: v Difference in chemical potential between
Xeo ) a monomer in supersaturated conditions
and equilibrium with the particle of size r

d(AG) dA

—=0==0+w,— At equilibrium

dn dV 2 o dA g

For a sphere

>
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3
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=
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Three forms of the Gibbs-Thompson Equation
(2vy

Ostwald-Freundlich Equation X =X . CXy = )
p\ rkT

Areas of sharp curvature nucleate and grow to fill in. Curvature x = 1/r

20, + K, )v,Y )

Second Form of GT Equation
kT )

X =Xx_ex

45



Three forms of the Gibbs-Thompson Equation

BYI.
r= Third form of GT Equation/ Hoffman-Lauritzen Equation
AH f (Tm acos T) B is a geometric factor from 2 to 6
AH Crystallize from a melt, so supersaturate by a deep quench
AS=——
I,
Free energy of a
3{ T 2 3 AH f 2 crystal formed at
Af =l AH/ == AHf Bi (l - T) — Bi —Y supercooled
k T;c 7; temperature T

T_, __B D{ —By} _\_z_\_mexp[zmm)m % Y (M)
= ' KT p\rkT
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Nitrogen (or Argon) adsorption

2% - 5

~ vacuum

= pllmp
gas
i adsorbent = storage

sample
as
b%ret

FIG. 9.3 Schematic illustration of a gas adsorption apparatus.
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Langmuir Equation (Wikipedia)

Can be obtained using Equilibria or Kinetic Model

A, +S—= A,

The surface containing the adsorbing sites is a perfectly flat
plane with no corrugations (assume the surface is
homogeneous). However, chemically heterogeneous
surfaces can be considered to be homogeneous if the
adsorbate is bound to only one type of functional groups on
the surface.

The adsorbing gas adsorbs into an immobile state.

All sites are energetically equivalent, and the energy of
adsorption is equal for all sites.

Each site can hold at most one molecule of A (mono-layer
coverage only).

No (or ideal) interactions between adsorbate molecules on
adjacent sites. When the interactions are ideal, the energy of
side-to-side interactions is equal for all sites regardless of
the surface occupancy.

A schematic showing equivalent sites, occupied (blue) and &7
unoccupied (red) clarifying the basic assumptions used in the model. The
adsorption sites (heavy dots) are equivalent and can have unit
occupancy. Also, the adsorbates are immobile on the surface.
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Langmuir Equation (Wikipedia)

Can be obtained using Equilibria or Kinetic Model

Equilibrium Reaction Model
Solvent (bound) + Solute (free) « Solvent (free) + Solute (bound)

Solvent = 1; Solute = 2; s = surface bound; b = bulk solution free

ab x ad s s s 8
_ 177 ay=X5=0,a] =Xj,and X] + X5 =1
b 8
K.ag
0=—b
1+ K.a,

A schematic showing equivalent sites, occupied (blue) and &
unoccupied (red) clarifying the basic assumptions used in the model. The
adsorption sites (heavy dots) are equivalent and can have unit
occupancy. Also, the adsorbates are immobile on the surface.
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Langmuir Equation (Wikipedia)

Can be obtained using Equilibria or Kinetic Model

Kinetic Reaction Model

Tad = kad Pa [S], pa is the partial pressure of A over the surface

rq = kq [Aagl, [S] is the concentration of free sites in number/m2,
[AL4] is the surface concentration of A in molecules/m?
(concentration of occupied sites)
k.q and k4 are constants of forward adsorption reaction
and backward desorption reaction

. [Aad] kad A schematic showing equivalent sites, occupied (blue) and &
Setting rag = I = = K, él unoccupied (red) clarifying the basic assumptions used in the model. The
PA [S] kd adsorption sites (heavy dots) are equivalent and can have unit

occupancy. Also, the adsorbates are immobile on the surface.
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Langmuir Equation (Wikipedia)

Can be obtained using Equilibria or Kinetic Model

Kinetic Reaction Model

We can then calculate the concentration of all sites by summing the concentration of free sites [S] and occupied sites:

[So] = [S] + [Aad]- [Aad]  kag

Combining this with the equilibrium equation, we get = = Kc‘%
) PA [S] kd
[Add] 1+ Ke'q PA
[So) = == + [Aaa] = ——— [Aaa).
eq PA Keq PA
We define now the fraction of the surface sites covered with A, 84, as
9 [Aaq)
A= .
[So]
This, applied to the previous equation that combined site balance and equilibrium, yields the Langmuir adsorption isotherm:
K, A PA
04 -

1+ Ké%l PA
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Figure 1.12. Adsorption- and desorption isotherm of N, (5.0) on standardized material
CRMBAM-PM-104 at 77.3 K, p, = 1 atm, [1.36].
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A(g) + S = AS,
Ag) +AS = A,S, 1938 Stephen Brunauer, Paul Emmett, and Edward Teller

A(g) + A2S = A4S and so on.

(P/ PO)/ (Vads( 1-P/ PO)) =1/ (Kqumono ads) + (P/ PO)(Keq - 1)/ (Kqumono ads)
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—

Amount adsorbed

T
gred Type Il

X Type | adsorption isotherm Lan gmu ir

Type | isotherms are those in which the pore size is not substantially larger than the molecular diameter of

—

Amount

adsorbed

Presssure  —» the sorbate molecules. This isotherm shows that the extent of adsorption increases with pressure until it

Presssure reaches saturation, at which point no further adsorption occurs.

Type Il adsorption Isotherm BET

Isotherms of type Il are generally observed in adsorbents that have a wide range of pore sizes i.e.
macroporous. It is obtained when the bilayer is formed only after the monolayer has been fully formed, and
Type 111 the trilayer is formed only after the bilayer has been fully formed.

Type il adsorption Isotherm

It is obtained when the formation of monolayers, bilayers, trilayers, and other layers all take place at the
same time, resulting in an almost exponential increase in the amount of adsorption.

Presssure - Type IV adsorption isotherm

Type IV isotherm predicts the formation of two surface layers on the plane surface or on the wall of a pore
much wider than the sorbate’'s molecular diameter i.e.e mesoporous.

Type V
Ipe Type V adsorption isotherm

¥ This type of adsorption isotherm is obtained only when intermolecular attraction effects are large, and
’ adsorption takes place in pores and capillaries.

Pressure = Pressure —»

Fig. Adsorption isotherms v



Empirical power-law equation for adsorption

Freundlich adsorption isotherm |edit]

The Freundlich adsorption isotherm is mathematically expressed as

i = Kpl /n
m

It is also written as

1
logi =log K + —logp
m n

or

© Freundlich's data for acetic acid

a5V ! — calculated for K=2.7 and n=3
m

x__

It is also written as

T 1 L 1 1 1 1
log— =log K + —loge 0 1 2 3 4 5 6

m n ¥
concentration ceq

wher
o Freundlich's original data for adsorption of acetic acid (page 392 in [3) &7

X = mass of adsorbate and a fit according to Freundlich's exponential law.

m = mass of adsorbent
P = equilibrium pressure of the gaseous adsorbate in case of experiments made in the gas phase (gas/solid interaction with gaseous species/adsorbed species)
¢ = equilibrium concentration of adsorbate in case of experiments made with an aqueous solution in contact with a dispersed solid phase (dissolved species/adsorbed species).

K and n are constants for a given adsorbate and adsorbent at a given temperature (from there, the term isotherm needed to avoid significant gas pressure fluctuations due to
uncontrolled temperature variations in the case of adsorption experiments of a gas onto a solid phase).

At high pressure 1/n = 0, hence extent of adsorption becomes independent of pressure.
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Figure 1.12. Adsorption- and desorption isotherm of N, (5.0) on standardized material
CRMBAM-PM-104 at 77.3 K, p, = 1 atm, [1.36].
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FIG. 9.12 Five models for capillary condensation. The radius of the pore equals 7, the radius of
curvature of the spherical meniscus is R,, and ¢ is the thickness of the adsorbed layer. The subscripts
a and d refer to adsorption and desorption.
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Surface Energy Term and Block Co-Polymers

P ¥ WD

A-spheres A-cylinders bicontinuous  lamellae bicontinuous B-cylinders  B-spheres
1 l 1 l l 1
I 1 I 1 I I
0.17 0.28 0.34 0.62 0.66 0.77

Fig. 4.27. Different classes of microphase separated structures in block copolymers,
as exemplified by PS-block-PIl. The numbers give the phase boundaries in terms of
the volume fraction of the PS blocks. Figure taken from a review article by Bates
and Frederickson [29]
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Fig. 4.29. Phase diagram of a di-block copolymer in a schematic representation.
The curve describes the points of transition between the homogeneous phase and
the microphase separated states. The ordered states are split into different classes
as indicated by the dashed boundary lines. They are only shown here for the region
of higher values of yNag away from the phase transition line
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Micro-Phase Separation
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Fig. 4.28. SAXS curves measured for a series of PS-block-PI with different molar
masses in the microphase separated state: (a) M = 2.1 x10* gmol ™', ¢(PS) = 0.53;
(b) M = 3.1 x10* gmol™!, ¢(PS) = 0.40; (c¢) M = 4.9 x 10* gmol™!, ¢(PS) =
0.45 (left). Transmission electron micrographs obtained using ultra-thin sections of
specimen stained with OsQy (right). Structures belong to the layer regime. Data

from Hashimoto et al. [30]

59



How can you predict the phase size? (Meier and Helfand Theory)
Consider lamellar micro-phase separation.

For a symmetric binary blend of polymers, the Flory Huggins equation predicts a critical point at yN = 2.
If the same two polymers are bonded, they microphase separate at yN = 10.5, the bonding makes the
polymers more miscible.

’A-(/l’ .A/l ‘I.A-‘;l,_ﬂ ‘I‘A'\'p.(()ni

l)

Enthalpy associated with phase segregation
Entropy associated with locating the junction points at the phase interface
Entropy associated with stretching the chains

X - (). Drives a positive enthalpic contribution that favors micro-phase separation
A//I, _ /'.,1.\ ‘\-‘\“(‘,)4\ (1 Ha) 4 A/’l’-“ A;sume transition from.perfectly
mixed to perfectly demixed
Ahe e ~ kT ”P’/' An interfacial layer of thickness d,,
lp,if = KL X A )
v, rea per polymer chain o,
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How can you predict the phase size? (Meier and Helfand Theory)
Consider lamellar micro-phase separation.

For a symmetric binary blend of polymers, the Flory Huggins equation predicts a critical point at yN = 2.
If the same two polymers are bonded, they microphase separate at yN = 10.5, the bonding makes the
polymers more miscible.

A.’/p = Ahp — "I'A""l).il‘ = "I‘Asl“"““f

(It ds |—
da + dp

R \*
ASI).(‘(mf ~ —k <_> Ro? = NI2
Ry R =P ds = (s + o)

ASI,‘”' ~ A lll

/ 2

: 2 [ CUAB

Asp.u)nf = =KD | — N .
Ro OpdAB = INABUe
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How can you predict the phase size? (Meier and Helfand Theory)
Consider lamellar micro-phase separation.

For a symmetric binary blend of polymers, the Flory Huggins equation predicts a critical point at yN = 2.
If the same two polymers are bonded, they microphase separate at yN = 10.5, the bonding makes the
polymers more miscible.
UN’:\B - *"\“.;\B Ue
A.(/p = Ah o Y= 1 iAHp.il' -1 A""p.nmf

There is only one free parameter, for instance o, d dy
the cross-sectional area per polymer chain (Tom Witten, U Chicago) °

([t + 32 ((l;\[5>2

Aq,, = —XNAB®A(1l — @A) + x0pd c'(._l + In

kT (1‘,\3 1]’()
opdap = NABU.
; AT 2 . . .
1 ([Agp B s 032 Nigve 1 Find thej minimum in the free energy
kT do, v, RZ o3 Dyvamingo
P ¢ 0 p Ignoring “In” term that varies slowly
3 7
03 x 2—5—N2p R2 x v2/3N Ue . : N3 v
P 2 Ry AP 0= % AR 0., X NagB dip = —\,B x xdyv?/3Ni

P
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How can you predict the phase size? (Meier and Helfand Theory)

Consider lamellar micro-phase separation.

N3 3
) S > - 2/3 ar2
dpp = # x xd v P N
0,
[)
10°
B °
3
£ L
@ > Perfect match
) b
102 1 1 1 1 1 [ B O |

10°
M

Fig. 4.30. Set of samples of Fig. 4.28. Molecular weight dependence of the layer

spacing dag
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Binary Correlation Function (Radial Distribution Function) and S/V ratio

g(r) is the probability of finding a point “x” (diamond) in a phase and
of finding a point “y” (circle) a distance “r” from “x” also in the phase

Consider small “r” compared to the particle size for a smooth/sharp interface (not a spinodal or diffuse interface)
Probability of “x” being in the phase is the volume fraction “¢” of the particle phase.

There are three possibilities:
Yes for “x” = ¢

g(r) = Yes for “x” and for “y” = ¢ (1 — (S/V) r)
Volume urtace o So, this is a straight line that decays with (S/V)
For small “r” where the curvature of the phase doesn’t matter and
Yes r For smooth sharp interfaces, not diffuse and not rough interfaces

The Fourier transform of the correlation function is the X-ray or
neutron scattering and small sizes are at large angles in the small angle
regime for nanoparticles. The transform of this linear decay is a
power-law decay of -4 slope, I(q) ~ S/V q* Porod's Law
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For fine grain particles at times a high Gibbs free energy polymorph forms

a-Al,0; is the stable form but y-Al,05 forms for small particles
v-Al,03 has a lower surface energy

15

T

wn
T

135 m2/g ~ 12 nm particles

0

Ays Hyy 1 kI mol™

0 50 100 150 200 250

Surface area / m?2 g” S/V ~ 1/r

Figure 6.19 The enthalpy of transition of -Al1203 to a-Al203 as a function of the surface
area of the nanocrystalline particles [25].
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Adsorption (Adherence to surface, can be chemical or physical)

" Adsorbat
<! Solid or
Liquid

L P
Adsorbent The adso(;'ption Surface
Molecules in a F,- =n i /As Excess
Liquid or Gas Moles

X —

Figure 6.21 Schematic illustration of the concentration of component A across an inter-

face. The Gibbs dividing surface is positioned such that it gives zero adsorption of compo-

nent A since the algebraic sum of the two shaded areas with opposite sign is zero.

Physical adsorption: Low enthalpy of adsorption; reversible adsorption isotherm

Chemical adsorption: Large enthalpy of adsorption; irreversible; chemical change to surface
Hysteresis in adsorption isotherm
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Figure 1.12. Adsorption- and desorption isotherm of N, (5.0) on standardized material
CRMBAM-PM-104 at 77.3 K, p, = 1 atm, [1.36].
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o i ’ Gibbs Adsorption Equation

C
\\ Internal Energy of System: {/ = 7§ — [)U' VA p /jv h + ZII”U i+ OA
pp— |

(;\ -

C
T Surface Excess Internal Energy: [/ c _ TS o " Z n (.T,U,‘ + O'/\\.
i .
i=l
-SUV
H A Differential Form with respect to the area:  ({/ O o T7dS e: + Z Ui d ,,’(,’ + odA 4
-pGT ) '
I
Subtract the total derivative from C
the differential form yields the S 22 dl’ < Z n G d u; + A . do =0
Gibbs-Duhem for Surface e b '
Excess: O
I =n 1A
S°

C
Gibbs Adsorption Equation do = - dI’ - ZF,- du;

S i=]

A
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Gibbs Adsorption Equation do =—-—— dl — ir du;

Gibbs-Duhem Equation: Z n; dﬂ i = 0 d Hao =—— d,U B

X A
_[ d() ) :|:rB _[ .\'A )r/\
d,Ll B )1 AR

do/dIn(xg))r = -RT[I'g — (x5/xg) ['A)
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z B Adsorption, I', depends on the position of the “surface” l“,‘ =n G/ /\S

a g l
c* —cP
P Relative Adsorption, doesn’t I“,- —FA .
(‘(X —('ﬁ
A A
(o)
xX— ,I. I I
I = f = (n,—nf‘—nf’)z—(n,—c;’v“ —cf*v")
As As As
| . B p B V¢ is the volume of the a-phase
['A :A—[HA —(AV —(cy —(A)V ]
S
% -cP) . . [c®=cP
Relative Adsorption ri _rA -t |=— (II,- = V)—(IIA - C V) .
& _oB | A : U T .
A A ! A A J]

Multiply second equation by c ratio then subtract, it doesn’t depend on the position of the surface.
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Relative Adsorption

A
MY =T —Ty

Gibbs Surface X is located
where there is no net
adsorption of A

Ca —

x>
Figure 6.21 Schematic illustration of the concentration of component A across an inter-
face. The Gibbs dividing surface is positioned such that it gives zero adsorption of compo-
nent A since the algebraic sum of the two shaded areas with opposite sign is zero.
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rB =r(A)=—[ oo ) forI'A=0
T

Solutes that reduce the surface tension are adsorbed
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Henry’s Law for Surfaces (surface impurities change surface tension)

. o,
I'g 21“;3'” =—( :O- } forT'A =0
CHB )r

For an ideal gas ug = RTInpg where pg is the partial pressure of B

rB:r(A):_ 1 oo
= RT \Olnpg )

Define j as the surface activity of an impurity

-
Surface Activity of B jB —— l co At infinite dilution so Henry’s Law Regime
RT | Oxg - Pi =X; D,
2 A 7, 0
g = L [ do __1 | oo OKB _ .1 )| oUB
Ax , Dx B |0
RT |\ ox B Xp =] RT CHB xXa =l OsB Xa =1 RT OXp x5 —l
dlna .
— r( A)l* B A small number of electronegative elements can
B have a large impact on surface energy of metals j,

Xp—1 ~1000 for oxygen and sulfur 74



20k P-Fe(s) I
f‘ll
S 16f O-Feliq) |
~ : —relll
: st) q
~12}
5]
© 08 | S—FC(]lq)

' O-Ag(s)

1E-5 1E-4 1IE-3 0.01 0.1 |

X

Figure 6.22 Surface tension as a function of the concentration for some surface-active spe-
cies in solid Fe, Cu and Ag near their melting temperatures [27] and liquid Fe at 1550-1600
°«C [28].
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Figure 6.23 Isothermal surface tension versus composition of some binary metals [28],
oxide [29] and salt systems [14, 15].
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