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We propose that the origin of the Vogel–Fulcher–Tammann law is the increase of the range of elastic
interaction between local relaxation events in a liquid. In this picture, we discuss the origin of coopera-
tivity of relaxation, the absence of divergence of relaxation time at a finite temperature and the crossover
to a more Arrhenius behavior at low temperature.

� 2008 Elsevier B.V. All rights reserved.
The transition of a liquid into a glass on lowering the tempera- time scale. However, the nature of the phase transition and the sec-

ture may appear conceptually simple, yet this phenomenon has
turned out to be one of the most difficult and controversial prob-
lems in condensed matter physics, the problem of the glass transi-
tion [1,2]. At high temperature, relaxation time s of a liquid follows
Arrhenius dependence. On lowering the temperature, s almost uni-
versally deviates from Arrhenius dependence, and follows the Vo-
gel–Fulcher–Tammann (VFT) law:

s ¼ s0 exp
A

T � T0

� �
; ð1Þ

where A and T0 are constants. The origin of the VFT law is the main
open question in the field of the glass transition [1,2].

A related open question follows from the form of the VFT law,
namely what happens at T0. Because s formally diverges at T0, sev-
eral models have suggested that a phase transition from a liquid to
a glass phase can exist [1,2]. Because the divergence is not ob-
served in an experiment, it was proposed that the phase transition
is avoided due to sluggish dynamics when s exceeds experimental
ll rights reserved.
ond phase is not clear, which continues to fuel the current debate
[1,2]. Interestingly, the VFT law changes to a more Arrhenius form
at low temperature, pushing the divergence temperature down [3].
The origin of this crossover is not understood.

Another related problem is the physical origin of ‘cooperativity’.
The notion of cooperativity of molecular motion, which sets in a li-
quid as temperature is lowered, was introduced and intensely dis-
cussed in several popular theories of the glass transition. These
theories are based on the assumption that ‘cooperatively rearrang-
ing regions’, ‘domains’ or ‘clusters’ exist in a liquid, in which atoms
move in some concerted way that distinguishes these regions from
their surroundings [1,2,4–7]. The physical origin of cooperativity is
not understood, nor is the nature of concerted motion.

A glass is different from a liquid by virtue of its ability to sup-
port shear stress. This suggests that the change of stress relaxation
mechanism in a liquid on lowering the temperature is central to
the glass transition process, yet stress relaxation is not discussed
in popular glass transition theories, including entropy, free-vol-
ume, energy landscape and other approaches [2].

In this paper, we discuss how stress relaxation in a liquid
changes with temperature. We propose that the origin of the VFT

mailto:kot20@cam.ac.uk
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http://www.elsevier.com/locate/jnoncrysol


Fig. 1. An example of a concordant local relaxation event. Solid and dashed lines
around the shaded atoms correspond to initial and final positions of a rearrange-
ment, respectively. Arrows show the direction of external stress.
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law is the increase of the range of elastic interaction between local
relaxation events. In this theory, we also discuss the origin of coop-
erativity of relaxation, the absence of divergence of s at a finite
temperature and the crossover to a more Arrhenius behavior at
low temperature.

Relaxation and flow in a liquid proceed by elementary local
structural rearrangements, during which atoms jump out of their
cages. We call these rearrangements local relaxation events (LREs).
Because the divergence of the elastic field due to a LRE is zero, a
LRE is not accompanied by compression of the surrounding liquid,
and can be viewed, in a simple model, as a pure shear event [2].
Therefore, in discussing how LREs interact elastically, we consider
shear LREs. A typical shear relaxation event is shown in Fig. 1 (term
‘concordant’ in the figure caption is not important here, and will be
explained later). The accompanied structural rearrangement pro-
duces elastic shear stress which propagates through the system
and affects the relaxation of other events. The important question
here is how does this stress affect relaxation of other LREs in the
liquid?

Lets consider how the changes of stresses due to remote shear
LREs affect a given local relaxing region, shown in the center in
Fig. 2. Relaxation of the central event involves deformation of the
‘cage’ around the jumping atom (see Fig. 1), and therefore depends
on the stresses that propagate from the remote LREs to the center.
A remote shear LRE, similar to the one shown in Fig. 1, creates elas-
tic shear waves, which include waves of high frequency. This is be-
cause the deformation, associated with a LRE, creates a wave with a
length comparable to interatomic separations (see Fig. 1), and
hence with a frequency on the order of the Debye frequency. At
high frequency x > 1=s, a liquid supports propagating shear waves
[8], which propagate stress and its variations from remote LREs to
the central point. If s is macroscopically defined as the time of de-
cay of shear stress in a liquid [8,9], del ¼ cs gives the length of this
decay, where c is the speed of sound. Here, del gives an estimation
of the maximal range over which shear stress decays in a liquid. At
the microscopic level, the relevance of del ¼ cs is as follows. A high-
frequency shear wave originating from a LRE propagates stress un-
til a remote LRE takes place at the front of the wave, at which point
the wave front is absorbed by the remote LRE. Suppose this hap-
d

Fig. 2. Illustration of the elastic interaction between local relaxation events. This
interaction takes place within the range del from the central relaxing regions.
Shaded and open circles represent local relaxing regions inside and outside,
respectively, of the interaction sphere.
pens at distance del from the original LRE. del can be calculated
from the condition of equality of the wave travel time, del=c, and
the time at which the remote LRE takes place at point del. The latter
time is given by s, because microscopically, s is defined as the
average time between two consecutive LREs at one point in space
[8], and we obtain del ¼ cs as before.

Therefore, del defines the maximal distance over which the cen-
tral LRE is affected by elastic shear stresses due to other LREs in a
liquid (see Fig. 2). For this reason, del can be called the liquid elas-
ticity length. Note that relaxation of the central event is affected
by all those stresses that have enough time to propagate to the
center. Because it takes time s for the central event to relax, its
relaxation is affected by the stresses from all LREs located distance
cs away. After time s, the central event relaxes, and the process re-
peats. Therefore, the definition del ¼ cs is self-consistent.

Because c is on the order of a=s0, where a is the interatomic sep-
aration of about 1 Å and s0 the oscillation period, or inverse of De-
bye frequency (s0 � 0:1 ps),

del ¼ cs ¼ a
s
s0
; ð2Þ

On lowering the temperature, s increases as s ¼ s0 expðV=kTÞ,
where V is the activation barrier of a LRE [8] (here, V can be temper-
ature-dependent). According to Eq. (2), this increases del and the
number of LREs that elastically interact with a given event. We pro-
pose that this is the key to the super-Arrhenius relaxation.

Before discussing the VFT law itself, we note that Eq. (2) imme-
diately gives the crossover from non-cooperative to cooperative
relaxation. When, at high temperature, s � s0, del � a (see Eq.
(2)), and del < dm, where dm is the distance between neighboring
LREs of about 10 Å (dm is the distance between the centers of
neighboring molecular cages). This means that LREs do not elasti-
cally interact. As s increases on lowering the temperature, del P dm

becomes true. At this point, LREs are no longer independent, be-
cause relaxation of a LRE is affected by elastic stresses from other
events. This discussion, therefore, clarifies the physical origin of
cooperativity. Here, we do not need to assume or postulate cooper-
ativity of relaxation as in the previous work [1,2,4–7]. In this pic-
ture, relaxation is ‘cooperative’ in the general sense that LREs are
not independent, but the origin of this cooperativity is the usual
elastic interaction. We have recently shown how this interaction
gives rise to stretched-exponential relaxation (SER), a universal
feature of supercooled liquids [10]. The crossover from exponential
relaxation to SER takes place when del ¼ dm. According to Eq. (2), s
at the crossover, sc, is a universal value: sc ¼ s0dm=a. This gives sc

of about 1 ps, consistent with the numerous experiments [11,12].
In order to derive the VFT law, we recall the previous discussion

that V is given by the elastic shear energy of a liquid around a LRE
[2,13,14]. The energy needed for an atom to escape its cage at the
constant volume is very large because of the strong short-range
interatomic repulsions, hence it is more energetically favorable
for the cage to expand, reducing the energy needed for escape.
Such an expansion elastically deforms the surrounding liquid,
hence V is given by the work of the elastic force needed to deform
the liquid around a LRE. Because this deformation does not result
in the compression of the surrounding liquid (for the displacement
field u created by an expanding sphere, divðuÞ ¼ 0Þ, V is given by
the background shear energy of the liquid. This was confirmed
by the experiments showing that V increases with the liquid shear
energy [14].

We now recall the previous discussion of how LREs redistribute
external stress. In discussing creep, Orowan introduced ‘condor-
dant’ LREs [15]. A concordant shear LRE is accompanied by a strain
in the direction agreeing with the applied external stress, and re-
duces the local stress and energy (see Fig. 1). In order to counter-
balance this decrease, other local regions in a system support more
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stress [15]. Goldstein applied the same argument to a viscous li-
quid under external stress [16]. Consider that this stress is coun-
ter-balanced by stresses supported by local regions. Because a
local region supports less stress after a concordant LRE than before,
other local regions in the liquid should support more stress after
that event than before in order to counter-balance [16].

Lets consider a liquid perturbed by a pulse of an external field.
At time zero, shear stresses supported by local regions counter-bal-
ance external shear stress. As relaxation proceeds, each concordant
shear LRE reduces stress locally, until the external stress is relaxed
by a certain number of LREs N. When this process is complete, the
liquid relaxes to equilibrium. At times smaller than L=c, where L is
the system size, the external stress can be considered constant, and
the stress redistribution argument of Orowan–Goldstein applies.
Alternatively, we can consider an external stress constantly com-
pensating for the decreases of local stresses. In the resulting steady
flow, s is the time needed to relax an increment of external pertur-
bation, and can be viewed as the time of the liquid’s retardation be-
hind the external field. Let n be the current number of LREs, such
that n! N. If Dp is the increase of shear stress on the liquid around
a current local region that arises from the need to counter-balance
the decreases of stresses due to previous remote concordant LREs,
Dp increases with n. The increase of Dp consistently increases the
elastic strain in the direction of external shear stress, increasing
the background shear energy of the liquid around the current local
region. As discussed above, V for the current LRE increases as a re-
sult. The increase of V, DV , due to Dp is the work

R
Dpdq. If qa is the

activation volume [14], DV ¼ Dpqa, and V ¼ V0 þ qaDp, where V0 is
the high-temperature activation barrier. Because Dp increases with
n, V also increases with n. This gives the elastic feed-forward inter-
action mechanism for LREs, which sets SER [10].

To calculate V as a function of del, lets consider the last LRE that
relaxes an increment of external shear stress to be in the center of a
sphere of radius del (see Fig. 2). As relaxation proceeds, the shear
stress on the central region increases in order to counter-balance
stress decreases due to previous remote concordant LREs. Impor-
tantly, because this mechanism operates in the range set by del

and because del increases on lowering the temperature (see Eq.
(2)), stresses from an increasing number of remote LREs need to
be counter-balanced by the central region. It is also important to
note that all stresses within a distance del ¼ cs have enough time
to propagate to the center and affect relaxation of the central event
(recall self-consistency in definition of del).

Let Dpið0Þ be the reduction of local stress due to a remote con-
cordant LRE i. Dpi decays with distance, hence we denote DpiðrÞ as
its value at the center in Fig. 2. The increase of stress on the central
rearranging region, Dp, can be calculated as

Dp ¼ q
Z del

d0=2
4pr2DpiðrÞdr; ð3Þ

where q is the density of local rearranging regions and d0 is on the
order of the size of a relaxing region (in Fig. 1, d0 P 3a). Note that in
Eq. (3), del is the upper integration limit. In what follows, we as-
sume, for simplicity, that Dpið0Þ are constant, Dpið0Þ ¼ Dp0.

In an elastic medium, stresses decay as DpðrÞ / 1=r3 [9]. Be-
cause DpðrÞ ¼ Dp0 at d0=2, DpðrÞ ¼ Dp0ðd0=2rÞ3. Integration of Eq.
(3), together with V ¼ V0 þ qaDp from the discussion above, gives

V ¼ V0 þ p=2qqaDp0d3
0 lnð2del=d0Þ ð4Þ

Using s ¼ s0 expðV=kTÞ in Eq. (2), we obtain

del ¼ a exp
V
kT

� �
ð5Þ

Eqs. (4) and (5) define V in a self-consistent way. Eliminating del from
the two equations, we find:
V ¼ AT
T � T0

; ð6Þ

where A ¼ V0 þ p=2qqaDp0d3
0 lnð2a=d0Þ and kT0 ¼ p=2qqaDp0d3

0.
From Eq. (6), the VFT law follows:

s ¼ s0 exp
A

T � T0

� �
ð7Þ

In this picture, the super-Arrhenius behavior is related to the in-
crease of del (see Eq. (4)). The transition from the VFT law to the
Arrhenius form of s takes place in the limit of small del at high tem-
perature. In this case, the upper and lower integration limits in Eq.
(3) coincide, giving Dp ¼ 0, V ¼ V0 and s ¼ s0 expðV0=kTÞ.

In the proposed theory of the glass transition, the ongoing con-
troversy [1,2,18] regarding the divergence and possible phase tran-
sition at T0 is readily reconciled. The divergence at T0 can not exist
for the following reason. From Eqs. 5, 6, we find

del ¼ a exp
A

T � T0

� �
ð8Þ

When T approaches T0, del diverges, and quickly exceeds any finite
size of the system L. When del P L, all LREs in the system elastically
interact, and there is no room for the increase of V by way of
increasing del. The upper limit of integral (3) becomes del ¼ L, giving
temperature-independent V / lnðLÞ (see Eq. (4)). Further decrease
of temperature has a weaker effect on V, and can be due to, e.g.,
density increase, but not to the increase of del (the density-related
contribution to V does not depend on del or L). As a result, the
behavior of s tends to Arrhenius, pushing the divergence to zero
temperature.

del exceeds the experimental value of L above Tg: if sðTgÞ ¼
103 s; delðTgÞ ¼ 103 km, according to Eq. (2). Hence our theory pre-
dicts the crossover from the VFT law to a more Arrhenius behavior
at low temperature, as is seen in the experiments [3]. According to
Eq. (2), s at the crossover is s ¼ s0L=a. If a typical value of L is
1 mm, s at the crossover is 10�6 s, consistent with the experimen-
tal results [17].

We note here that del vastly exceeds the size of ‘cooperatively
rearranging regions’ (CRR), which is several nm at Tg (for review,
see, e.g., Ref. [6]). The physical picture of CRR is not clear [2]. It is
possible that the observed nm scale of CRR is set by the distance
beyond which the elastic strains from LREs decay to the values
undistinguishable from thermal fluctuations.

del gives an insight into the origin of liquid fragility [18]. Accord-
ing to Eq. (4), as long as at high temperature del < L, lowering the
temperature increases V, resulting in a fragile behavior. If, on the
other hand, del P L at high temperature already, further decrease
of temperature has a weaker effect on V, giving weak super-Arrhe-
nius behavior. Experimentally, for many systems the studied range
of temperatures varies from about 2Tg and Tg [12], hence we con-
sider the increase of del from high temperature Th ¼ 2Tg to Tg. Take,
for example, two systems on the stronger side of fragility plots,
BeF2 and SiO2. From the experimental values of Vh=kTg (Vh is the
activation barrier at the highest measured temperature), we find
Vh=kTh ¼ 24 and 19.6 for BeF2 and SiO2, respectively [19]. Accord-
ing to Eq. (5), this gives del ¼ 2:6 m and 33 mm at Th for the two
systems. Because a typical experimental value of L is on the order
of 1 mm, our theory correctly predicts that these systems should
be on the strong end of fragility plots. For two fragile systems, tol-
uene and propylene carbonate, Vh=kTh ¼ 3:34 and 5.75, giving
del ¼ 28 and 314 Å at Th, respectively. This is much smaller than
L, hence our theory predicts that these systems should be fragile,
as is seen experimentally. An interesting prediction from this pic-
ture is that strong systems will show increased fragility at high
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temperature when del < L (note that strong systems have been
measured at relatively low temperature only [18]).

Before concluding, we note that we discussed a typical experi-
mental setup, in which a liquid is perturbed and s is measured
as the time of return to equilibrium. All above results remain the
same in the equilibrium case as well, when thermally fluctuating
LREs interact via induced elastic stresses in the range set by del

[20].
In summary, we proposed that the origin of the Vogel–Fulcher–

Tammann law is the increase of the range of elastic interaction
between local relaxation events in a liquid. In this picture, we
discussed the origin of cooperativity of relaxation, the absence of
divergence of relaxation time at a finite temperature and the cross-
over to a more Arrhenius behavior at low temperature.

We suggest that the proposed theory is applicable to other sys-
tems, in which local rearrangements interact via the fields they in-
duce. This includes a wide range of phenomena, for example,
relaxation in spin glasses. Here, the same universal relaxation ef-
fects as in structural glasses are observed, including the VFT law,
cooperativity, SER and other phenomena.
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