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Final Advanced Materials Thermodynamics 
Due Friday December 13, 2024 

(Two Questions) 
 

Question 1 
 
Fenton SM, Padmanabhan P, Ryu BK, Nguyen TTD, Zia RN, Helgeson ME Minimal conditions 
for solidification and thermal processing of colloidal gels PNAS 120 e2215922120 (2023) explore 
the formation of gels based on three mechanisms: percolation, phase separation, and glassy arrest. 
Fenton determines a gelation point at the slowest extrapolated rate of gelation. Fenton states: “the 
minimal gel line is set by a complex interplay of percolation, phase separation, and glassy arrest, 
which dissects the phase diagram into a number of regions with differing time-dependent gelation 
behavior that is conserved across interaction potentials of differing range.”. 
 

a) Gels involve formation of a network of particles or molecules in a solvent. Explain the 
pathway for formation of this network based on 1) percolation, 2) phase separation and 3) 
glassy arrest.  
How would the thermal dependence of gelation differ for these three mechanisms?  
Under each of these three mechanisms, is gelation a thermodynamic transition?  
What role would kinetics play in each of these three mechanisms?  
What is the difference between a “state diagram” discussed by Fenton, and a phase 
diagram discussed in class? 
 

b) Michael Cates is somewhat seen as the next potential Nobel Laureate for soft matter 
physics. Fenton’s paper is premised on a paper by Cates “For example, Cates and 
coworkers (13) posited that quenches at different rates could be used as a means of 
controlling gelation behavior when the time scales of phase separation intersect with the 
time scales of the quench.”  
Explain this text.   
Explain the “minimal gel point” described by Fenton on page 4 at the top of the second 
column. 

 
c) Fenton’s equation 1 relates an interparticle potential obtained from neutron scattering to 

the second virial coefficient (see   
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_
Maps/Physical_Chemistry_(LibreTexts)/16%3A_The_Properties_of_Gases/16.05%3A_T
he_Second_Virial_Coefficient).  
Explain how the second virial coefficient for non-interaction hard spheres of radius s is 
estimated from the van der Waals equation (a = 0). How is this used in equation 1? 

 
d) In oscillatory rheometry the strain is oscillated, and the stress is measured as a function of 

time. The in-phase stress defines the storage modulus G’ (solid-gel behavior). The out-of-
phase stress defines the loss modulus G” (liquid-sol) behavior. When G” > G‘, the material 
is a liquid sol. When G’ > G” the material is a solid gel.  Measurements are usually made 
at different frequencies of oscillation, high frequency (short time) leads to solid, low 
frequency (long time) to liquid. Fenton measures at a fixed frequency and observes the G’ 
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and G” as a function of gelation time with G”/G’ (or tan d where d is the phase angle) 
dropping. The gel point is defined by Fenton as the time where G’ = G” (or tan d = 1 and 
phase angle = 45°).  This cross over time is the “gel time”, tgel. B2* from equation 1, as 
measured by scattering or simulation, is plotted against tgel-1 to determine the infinite time 
B2* (where 1/tgel => 0). (In the van der Waals model B2 = b - a/kT so the B2* axis is 
effectively a 1/T axis.)  
How would Fenton’s figure 3A be used to predict phase behavior?  
Explain the three regimes, red, green, and blue in Fenton’s figure 3A. 
 

e) Fenton discusses a time-scale dependence to gelation. There is also a size-scale dependence 
to gelation, considering, for instance, a percolation model or an Ising model.  
Explain a size-scale dependence (not discussed by Fenton) and how it could impact 
comparisons between simulation, scattering, and rheology (typically rheology probes 
macroscopic sizes at low frequencies (long times) and atomic sizes at very high frequencies 
(short times) such as in Figures 3 B, C, D).   
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Question 2 
 

One form of the Gibbs-Thompson Equation (GTE) describes the shift in melting point for nano-
crystals as a function of their size and can be adapted to describe the shift in melting point for 
confined fluids such as at an AFM tip as a function of a fluid filled gap’s height, h, Fig. 2 below. 
Scalfi L, Coasne B, Rotenberg B, On the Gibbs-Thomson equation for the crystallization of 
confined fluids. J. Chem. Phys. 154 114711 (2021) present a new derivation of the GTE for 
confined fluids and use the derivation to simulate crystallization in confined pores and gaps using 
a Monte Carlo method.   

 

      
 

a) The normal derivation of the GTE involves simply writing an expression for the Gibbs free 
energy that includes volumetric and surface terms, considering equilibrium for small 
particles (spheres) and solving for the particle size.   
Derive the GTE in this way for a planar crystal with infinite width and height H (Scalfi 
uses “h” for the enthalpy per particle).  Scalfi’s GTE includes two surface energies, that of 
the liquid and that of the solid.   
How do you accommodate this in your derivation? 

 
 

b) Scalfi gives the following thermodynamic potential (2) and internal energy (3) for the 
fluid/solid between the gap, 

 
 

Use the thermodynamic square or other means to explain the origin of these two 
expressions.   
What kind of free energy is W ? 
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c) The son of Herman von Helmholtz (Robert von Helmholz) derived the Gibbs-Thompson 
equation from the Oswald-Freundlich Equation (OFE) using the integrated Clausius-
Clapeyron Equation (CCE) for his PhD dissertation in 1885 (things were simpler then).   

      OFE 

                 CCE 
For this reason, the OFE or Kelvin Equation is sometimes referred to as the GTE.   
Obtain the GTE from the OFE using the integrated CCE. Also, give (don’t derive) the 
Ostwald-Freundlich Equation which describes the relationship between the 
supersaturated mole fraction, x, and nanoparticle size, r, for crystallization from solution.  
 

d) Scalfi used Monte Carlo Simulations with the Metropolis method to determine the melting 
point, Figure 9 where N is the density and T* is a reduced temperature.  He used a 6-12 
potential with a cutoff of 2.5 s where s is the atomic size. Monte Carlo steps involved 
translation, deletion or insertion. The starting state could be liquid or crystal structures and 
resulted in the densities shown in Figure 9.   
Give an algorithm for a typical Metropolis simulation of this type.  
How would you determine if the simulation had reached equilibrium? 
 

e) In Figure 9 Scalfi shows that the crystalline structure exists at the interface with the AFM 
tip and the stage (which is the same material in the simulation) even in the (bulk) 
amorphous state (lower structure).  
Derive expressions comparing the free energy barrier, DG*, and phase size, r*, for 
surface (heterogeneous) and bulk (homogeneous nucleation).   
Can this explain the observed behavior? 


