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Supplementary Figure 1 Learning curve during training 3D CNN for modeling spinodal structure 

evolution. 
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Supplementary Figure 2 3D periodicity of phase field result for step No. 50 of CNN based 

spinodal decomposition simulation. The cyclic padding successfully imposed periodic boundary 
condition for CNN-based simulation. 
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Supplementary Figure 3 Disjoint particles formed due to periodic boundary for porous structure 

derived at the early stage of spinodal decomposition (here step 1 for illustration purpose). The 

main spinodal structure, albeit with extreme randomness, has strict self-connectivity in 3D space. 
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Supplementary Figure 4 Workflow of training and testing CNN for predicting elastic stiffness of 

anisotropic spinodal structure. 
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Supplementary Figure 5 Data distribution of the generated property dataset for training property 

prediction CNN. 
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Supplementary Figure 6 Large-scale spinodal decomposition simulation enabled by CNN to 

obtain different gradient spinodal structures. 
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Supplementary Figure 7 Five-step design workflow for designing orthopedic implant with desired 

outer shape and internal porosity. 
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Supplementary Figure 8 By adjusting the spatially varied mean of noise input for CNN-based 

simulation, one can obtain gradient spinodal structure with (A) smooth solid-to-porous transition; 
(B) relatively harp solid-to-porous transition.   
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Supplementary Figure 9 Cyclic or periodic padding used for imposing periodic boundary in the 

current CNN. For illustration purpose, 2D case is shown. 
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Supplementary Figure 10 Illustration of local thickness for calculating local pore size. The local 

thickness is equal to the diameter of the largest sphere that fits inside the pore channel and 
contains the point [1]. 
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Supplementary Figure 11 (A) FEM meshing that resolves the detailed morphology and (B) pore 

network that represents the porous structure as a network of pipes [2]. 
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Supplementary Figure 12 Pore network representation of the studied porous structures for pore 

network modeling of diffusion. 
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Supplementary Figure 13 Workflow of training and testing CNN for predicting elastic stiffness of 
anisotropic spinodal structure. 
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Supplementary Figure 14 Architecture of the adopted CNN for building linkage between 3D 
spinodal structure and its elastic stiffness, C.  
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Supplementary Figure 15 Illustration of direction vector, d, for calculating 3D direction-
dependent Young’s modulus. (Image adapted from [3]). 
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Supplementary Table 1 Detailed architecture of the adopted 3D CNN for spinodal decomposition 

simulation 

Layer name Output shape 

Convolutional 

Input (64 , 64 , 64, 1) 
Block1_conv1 (64, 64, 64, 16) 
Block1_conv2 (64, 64, 64, 16) 
Block2_conv1 (64, 64, 64, 32) 
Block2_conv2 (64, 64, 64, 32) 
Block3_conv1 (64, 64, 64, 64) 
Block3_conv2 (64, 64, 64, 64) 
Block4_conv1 (64, 64, 64, 128) 
Block4_conv2 (64, 64, 64, 128) 
Block5_conv1 (64, 64, 64, 256) 
Block5_conv2 (64, 64, 64, 256) 

Deconvolutional 

Block6_conv1 (64, 64, 64, 128) 
Concatenate1 (64, 64, 64, 256) 
Block6_conv2 (64, 64, 64, 128) 
Block6_conv3 (64, 64, 64, 128) 
Block7_conv1 (64, 64, 64, 64) 
Concatenate2 (64, 64, 64, 128) 
Block7_conv2 (64, 64, 64, 64) 
Block7_conv3 (64, 64, 64, 64) 
Block8_conv1 (64, 64, 64, 32) 
Concatenate3 (64, 64, 64, 64) 
Block8_conv2 (64, 64, 64, 32) 
Block8_conv3 (64, 64, 64, 32) 
Block9_conv1 (64, 64, 64, 16) 
Concatenate4 (64, 64, 64, 32) 
Block9_conv2 (64, 64, 64, 16) 
Block9_conv3 (64, 64, 64, 16) 
Block10_conv1 (64 , 64 , 64, 2) 

Output (64 , 64 , 64, 1) 
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Supplementary Table 2 Detailed architecture of the adopted 3D CNN for elastic property 
prediction 

Layer name Output shape 

Encoder 

Input (64 , 64 , 64, 1) 
Block1_conv1 (64, 64, 64, 16) 
Block1_conv2 (64, 64, 64, 16) 
Block2_conv1 (32, 32, 32, 32) 
Block2_conv2 (32, 32, 32, 32) 

Average pooling (32) 

Fully 
connected 

layer 

Dense_1 (256) 
Dense_2 (128) 
Dense_3 (64) 
Output (9) 
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