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Supplementary Figure 1 Learning curve during training 3D CNN for modeling spinodal structure

evolution.



Supplementary Figure 2 3D periodicity of phase field result for step No. 50 of CNN based
spinodal decomposition simulation. The cyclic padding successfully imposed periodic boundary
condition for CNN-based simulation.
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Supplementary Figure 3 Disjoint particles formed due to periodic boundary for porous structure
derived at the early stage of spinodal decomposition (here step 1 for illustration purpose). The

main spinodal structure, albeit with extreme randomness, has strict self-connectivity in 3D space.
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Supplementary Figure 4 Workflow of training and testing CNN for predicting elastic stiffness of

anisotropic spinodal structure.
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Supplementary Figure 5 Data distribution of the generated property dataset for training property

prediction CNN.



Random initialization with Spinodal decomposition
spatially varied mean simulation by CNN
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Supplementary Figure 6 Large-scale spinodal decomposition simulation enabled by CNN to
obtain different gradient spinodal structures.
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Supplementary Figure 7 Five-step design workflow for designing orthopedic implant with desired
outer shape and internal porosity.
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Supplementary Figure 8 By adjusting the spatially varied mean of noise input for CNN-based
simulation, one can obtain gradient spinodal structure with (A) smooth solid-to-porous transition;
(B) relatively harp solid-to-porous transition.
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Supplementary Figure 9 Cyclic or periodic padding used for imposing periodic boundary in the
current CNN. For illustration purpose, 2D case is shown.
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Supplementary Figure 10 Illustration of local thickness for calculating local pore size. The local
thickness is equal to the diameter of the largest sphere that fits inside the pore channel and
contains the point [1].
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Supplementary Figure 11 (A) FEM meshing that resolves the detailed morphology and (B) pore
network that represents the porous structure as a network of pipes [2].
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Supplementary Figure 12 Pore network representation of the studied porous structures for pore
network modeling of diffusion.
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Supplementary Figure 13 Workflow of training and testing CNN for predicting elastic stiffness of
anisotropic spinodal structure.
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Supplementary Figure 14 Architecture of the adopted CNN for building linkage between 3D
spinodal structure and its elastic stiffness, C.
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Supplementary Figure 15 Illustration of direction vector, d, for calculating 3D direction-
dependent Young’s modulus. (Image adapted from [3]).
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Supplementary Table 1 Detailed architecture of the adopted 3D CNN for spinodal decomposition

simulation

Layer name Output shape

Convolutional

Input

(64, 64,64, 1)

Blockl convl

(64, 64, 64, 16)

Blockl conv2

(64, 64, 64, 16)

Block2 convl

(64, 64, 64, 32)

Block2 conv2

(64, 64, 64, 32)

Block3 convl

(64, 64, 64, 64)

Block3 conv2

(64, 64, 64, 64)

Block4 convl

(64, 64, 64, 128)

Block4 conv2

(64, 64, 64, 128)

Block5 convl

(64, 64, 64, 256)

Block5 conv2

(64, 64, 64, 256)

Deconvolutional

Block6 convl

(64, 64, 64, 128)

Concatenatel

(64, 64, 64, 256)

Block6 conv2

(64, 64, 64, 128)

Block6 conv3

(64, 64, 64, 128)

Block7 convl

(64, 64, 64, 64)

Concatenate2

(64, 64, 64, 128)

Block7 conv2

(64, 64, 64, 64)

Block7 conv3

(64, 64, 64, 64)

Block8 convl

(64, 64, 64, 32)

Concatenate3

(64, 64, 64, 64)

Block8 conv2

(64, 64, 64, 32)

Block8 conv3

(64, 64, 64, 32)

Block9 convl

(64, 64, 64, 16)

Concatenate4

(64, 64, 64, 32)

Block9 conv2

(64, 64, 64, 16)

Block9 conv3

(64, 64, 64, 16)

Block10 convl

(64,64, 64,2)

Output

(64, 64,64, 1)
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Supplementary Table 2 Detailed architecture of the adopted 3D CNN for elastic property

prediction
Layer name Output shape
Input (64,64,64,1)
Blockl convl (64, 64, 64, 16)
Encoder Blockl conv2 (64, 64, 64, 16)
Block2 convl (32,32,32,32)
Block2 conv2 (32,32,32,32)
Average pooling 32)
Dense 1 (256)
Fully Dense 2 (128)
connected Dense 3 ©4)
layer =
Output )
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