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Since the advent of laser spectroscopy a large part of the research effort
in Rayleigh and Brillouin scattering (RB scattering) has been devoted
to the study of excitations in fluids (for discussions, see Mountain 1966a,
Fabelinskii 1968, Benedek 1968, McIntyre and Sengers 1968, Fleury and
Boon 1973, Berne and Pecora 1976). Some of the concepts developed in
the study of fluids have relevance to solids and will be briefly outlined
here. Because the sound waves studied in light scattering are of long
wavelength, the microscopic structure of fluids can be ignored to a first
approximation. A thermodynamic treatment of fluctuations in a hydrody-
namic medium, regarded as a continuous isotropic dielectric, leads to a
spectrum of scattered light consisting of two types (Figure 8.1):

1. A quasielastic Rayleigh component centered at w, due to nonpropagat-
ing entropy fluctuations.

2. A Brillouin doublet symmetrically located about the unshifted line and
separated from it by a frequency equal to that of a compressional sound
wave propagating through the fluid.

The fluctuations in the susceptibility that give rise to RB scattering are due
to variations in thermodynamic quantities, such as density and tempera-
ture. The state of a fluid in thermodynamic equilibrium consisting of a
single constituent can be described by two variables, for example, the
pressure P(r,7) and the entropy S(r,7) so that the effect of fluctuations in
these variables on the susceptibility can be expressed as

6x(r.t)=(%)s8P(r.t)+(g—§)PGS(r,z). (8.1)

Using (1.71) we find that the differential cross section for scattering of
light by a fluid is

4
dzo w, D V
= SvI?) 2
dgdws 16724 <‘ x‘ / o 08 P, (82)
) Brillouin Brillouin
S | Stokes anti-Stokes
20(q” ZXQ;QQ’EZ
. : > Figure 8.1 Schematic representation of
-vq 0 V4 “$"™|  Rayleigh and Brillouin spectra.




Rayleigh and Brillouln Scattering 329

where ¢ is the scattering angle. Evaluation of ¢|8x|*>, leads to the result
(e.g., see Cummins and Gammon 1966)
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where fs is the adiabatic compressibility, p is the density, and C, is the
specific heat per unit mass. A formula of the type (8.3) was first obtained
by Einstein (1910).

To a good approximation sound waves are pressure (density) fluctua-
tions at constant entropy and the first term in the brackets in (8.3) is
associated with the excitation of the Brillouin doublet corresponding to
two sound waves with the same frequency travelling in opposite directions
(Brillouin 1914, 1922). The second term in (8.3) corresponds to nonpropa-
gating temperature (entropy) fluctuations and gives rise to the Rayleigh
component (Landau and Placzek 1934) (these fluctuations propagate in
superfluid and solid helium giving rise to second sound; see Section 8.3.1).
To a good approximation the ratio of the intensity of the Rayleigh
component to the sum of the two Brillouin components is
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This is known as the Landau-Placzek ratio (Landau and Lifshitz 1960);
it indicates that the intensity of Rayleigh scattering is proportional to
Cp— Cy. One weakness of (8.4) arises from neglect of dispersion in
thermodynamic properties, since the Brillouin components are measured at
relatively high frequencies (=10’ Hz) (Cummins and Gammon 1966).

The calculated line shapes for both Rayleigh and Brillouin components
are Lorentzian (Mountain 1966a). For the Rayleigh component we get for
the linewidth (Figure 8.1)

Awg =2)\"¢%, (8.5a)

where A'=)\/pC,, is the thermal diffusivity, A is the thermal conductivity
and ¢ is the wavevector transfer. In fluids the hnewndth (8.5a) has a value
of about 10 MHz for backscattering, decreasing as sin”(¢/2) as one goes to
the forward direction, where ¢ is the scattering angle (Figure 8.2). The
calculated width of the Brillouin components is (Figure 8.1)

Awy=2a'q?, (8.5b)



