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Abstract—The methods to calculate the Debye temperature from elastic moduli have been reviewed. The
approximation approach due to Moruzti al. was critically examined by considering experimental elastic
constant data for all the cubic elements. It was found that many cubic elements are exceptions with regard
to the assumed constant scaling factor for the expression of the average sound velocity in terms of the bulk
modulus, and consequently the Debye temperature of a cubic element must be calculated from the knowledge
of all the elastic constants of the system. On the other hand, a fairly constant scaling factor has been found
to exist for the hexagonal elements. Through the study of experimental data, some empirical relationships
have been observed between the high temperature entropy—Debye tempy@@)eend the low temperature

limit of the Debye temperatu@,(—3). For those structures that are dynamically unstable at low temperatures,
we proposed a way to obtain theig(0) from the calculated isotropic bulk moduli. The methods have been
applied to calculate the Debye temperatures of hcp, bcc, and fcc Ti, Zr, and Hf from their elastic moduli
derived from ab initio calculations. The calculated results agree very well with the experimentalldata.
2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION structures because their physical properties are not
Interest in the calculation of the Debye temperatur\?ev);%ergTﬁgé?gﬁczﬁcfaﬁiﬁzi(;Ar‘]zp?;mll)g thallsr:al.[gf riﬁa
has been increasing in both semi-empirical and theor- . ' play a may )

Total energy calculations from first principles can-

etical phase diagram calculation areas since the ; .
Debye model offers a simple but very effective©t only provide us with the ground state structure

method to describe the phonon contribution to thgroperties but are often used together with the Debye

Gibbs energy of crystalline phases. The Gibbs ener@noI Grmelsen models tf’, .derlve. t.hermophyswal
data currently used in CALPHAD (CALculation of ropertles_ a_lr_1d phase stablll_tles at finite ter_nperatures
PHAse Diagrams) applications are represented th3—5]- Ab initio alloy phase dlagrgm calculatlpns have
simple polynomials [1] and the parameters thu@'SO _shoyvn that the _|ncorporat|on of the vibrational
derived are lacking any physical significance. Thi§ontribution to the Gibbs energy through the use of
often makes the extrapolation of these data outsid@® Debye model can yield predictions in closer
their temperature range questionable and the esgdreement with measurements [6, 7]. .
mation of parameters for metastable phases very dif- Theoretical calculations of the phonon density of
ficult. Therefore, it has been suggested [2] that th&fates and thus the Debye temperature have been
Gibbs energy of a crystalline phase should be cof9ssible recently by using the frozen phonon
structed from its physical components, i.e., the grour@PProach [8], linear response theory [9], or ab initio
state energy, the lattice vibrational contribution, théorce constant method [10, 11]. However, all these
electronic excitation, and the electronic spin orderingchemes are computationally very demanding. Fortu-
etc. This can be done for stable crystalline phasedately, we don’t need to know the details of the
yielding an essential verification of this method, buphonon spectrum in order to calculate the Debye tem-
the main concern in the present work is metastabperature. In its original derivation [12], the Debye
temperature is related to the sound velocity and can
be calculated either rigorously or approximately from
t To whom all correspondence should be addressed. €lastic constants [13, 14]. The elastic constants can
E-mail addressging@met.kth.se (Q. Chen) now be obtained from first principles without too
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much effort [15—-17]. For nonmagnetic cubic systemsutoff frequency by 0, = hwpl/ks, is then pro-

Moruzzi et al. [3] proposed a further approximationportional to the Debye sound velocity:

in which the Debye temperature is directly correlated

to the ab initio calculated bulk modulus. This method _ h[6rPN\3

has gained wide use because of its simplicity and the 7 k| V '

ease to obtain the bulk modulus. However, to our

knowledge, this method has not been systematically

validated. whereV is the volume of the solid. In a real solid,
The ordinary Debye temperature, as referred tiere are three different types of sound velocities and

above, is the low temperature limit of the Debye temthey are generally anisotropic. It can be shown that

peraturefy(—3). The notationfy(—3) is a special [14]

case of the Debye temperaturég(n) which are

derived from thenth moment of the phonon fre- 1 13 1 dQ

quencies [14] (see Section 3). For phase diagram and B 52 fv?(é).q)) an )

thermodynamic calculations, the Debye temperature =t

of interest is the high temperature entropy—Debye

temperaturéd(0), another special case 6f(n) and where @,¢) are angular coordinates andQ =

related to the logarithmic average of the phonon freg;qg44 If the elastic constants of the crystal are
guencies. In an ideal Debye solid, aj(

n) are equal 40 4,(9,6) can be obtained b i

. . - ) , y solving a secular
to 65(—3), which can be obtained from either Iowe uationl, andu, and 6 can then be calculated by
temperature elastic constant or heat capacity data. Hﬁmerical integration ove® and ¢ [13, 14]. For an

a real Sﬁl'd’f however,GD(?]) IS d|f_ferenht fror_rf1f elastically isotropic mediumy; is independent of
90(7.3)' T ?re ore, we must .dave gr;]ldeg ow ﬁ' er'crystallographic directions, but different for the longi-
ent isp(0) from 6(—3). Besides, it has been showny ina| and the two degenerate transverse branches.

that many non-equilibrium phases are dyna_lmical% this case, equation (2) can be greatly simplified
unstable at low temperatures [18-20]. In this Casénd one has (13, 14]

65(—3) is not definable, but they should havé0)

if they eventually become dynamically stable at 1 1/1 2

high temperatures. 2o 5(@ + 173>, 3)
In the present investigation, we first review the e S

approximation methods for the calculation of the Debye

‘emp‘?ra“."e from elastic moduli and focus ona deta”%herevL andus are longitudinal and transverse sound
examination of the approach due to Moruetial [3]. velocities, and they are related to the longitudinal and

Then, we extend this approach to the hexagonal StrYe= hsverse modulil( and 9 and the densityd) by
ture. In Section 3, we demonstrate the empirica T

i ) U = VLIp andvs = VSp. With the above equation, a
relationship betweert(0) and 65(=3) through the o, 0 simpler method has been suggested for the cal-

consideration of experimental data. Section 4 is devot%g”ation of the (average) Debye sound velocity and
to those phases that exhibit dynamical instability at lo ebye temperature. In this method [13], the bulk

tgmperatures. For them, we suggest a way to obtain dulusB and Poisson ratiov of a polycrystalline

_h|_g_h temperature entropy—Debye tem_peratures_from ?fpaterial is estimated from the single crystal elastic
initio calculated isotropic bulk moduli. In Section 5, onstants by the Voigt—Reuss—Hill (VRH) approxi-
we perform first principles total energy calculations ana1ation [21] (see Appendix A) and then used to calcu-

apply the relevant empirical relation_s to Ti, Z_r, and Hfiate the longitudinal and transverse moduli by
and compare the calculatet},(0) with experimental

@)

results when possible. 3(1—
L =30V @)
1+v

2. A REVIEW OF APPROXIMATION METHODS
2.1. Debye temperature, sound velocity, and elastic S— 3(1—2\/)B (5)
constants 20+ v)

The Debye model [12—-14] assumes that the So'Hjherefore one obtains
is an elastic continuum in which all the sound waves ’
travel at the same velocity independent of their wave- B
length. Thus the phonon density of state becomes v = k(v)\/f, (6)
parabolic and a Debye cutoff frequenayy, can be P

determined by the normalization condition that the

total number of frequencies should equal thd 3 _

degrees of freedom if the solid ha$ atoms. The 0. — k(v)h<67z2p>l’3\/8 %
Debye temperaturdd,, defined as a measure of the o ks\ M

p
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where Landolt-Bonstein handbook [22, 23], and then used
to calculate the bulk modulusBY and Poisson ratio
T 1+ v 132 (v) for each element with the VRH approximation
k(v) = [3 [3(lv)] (8) method [21]. After that, the longitudinal and trans-
(1 + v)[¥2] |18 verse moduli are calculated according to equations (4)
+ 2{3(1_2‘/)] H , and (5). The calculated results are listed in Table 1

and plotted in Figs 1-3. The 10 elements selected by
Moruzzi et al. [3] are marked with filled symbols in

] ) ] Figs 1-3, and it is seen that all of them (except for
andM is the atomic weight. Anderson [13] has shown) are indeed falling on or close to the dashed line

that this method gives a value .for the Debyg soungorresponding tar = 0.364. However, it is interest-
velocity very cIose_to that obtained by the rlgorou\T.ng to note that most of the data not used by them
method after equation (2). Hence the Debye tempergfe more or less far away from the “universal” line,
ture can be very accuratgly calculated from th%ipecially for the shear modulus data in Fig. 2. This
experlmentgl data on_elastlc constants and dens understandable because shear modulus is more
using equation (7), which can be rewritten as sensitive to the variation of the Poisson ratioAs a
. _ matter of fact, we can easily see from Fig. 3 that the
_ n e [ToB v values vary systematically across the periodic table
0o = k(v)kB(487z5) \/M ©) in the range from 0.2 to about 0.4 except for the
extreme cases of C, Au, and Pb. As a redit) will
change from 0.954 to 0.524 (see Fig. 4) or, in other
for the convenience of theoretic calculations. In thigvords, from 1.55NV~CuPt0 0.84KNM-Cub  which
expressiont, is the equilibrium Wigner—Seitz radius, means that using the scaling constdd'—cu =
which is defined by #r3/3 = VIN = M/p. 0.617 could possibly underestimate the Debye tem-
rature by 35% or overestimate it by 18%. It is clear
om Fig. 3 that the scaling constad™™~<'" is
adequate only for those elements close to the maxima,
As shown above, the Debye sound velocity or terrrot for the other elements. Therefore, we conclude
perature can be calculated either rigorously dhat there is no universal scaling constant for all the
approximately from the knowledge of elastic concubic systems, nor for the nonmagnetic cubic sys-
stants. However, in a first principles calculation, comtems. Instead, the Debye temperature of a cubic sys-
puting all of these quantities is not easy comparegm must be calculated from the knowledge of all the
to deriving bulk moduli from the calculated bindingelastic constants of the system. If for any reason one
curves. Therefore, a further approximation would bias to estimate the Debye temperature from the bulk

helpful. By examining Anderson’s data [13], Moruzzimodulus alone, large uncertainties should be attached
et al. [3] found empirical relations between the longito the results.

tudinal and shear modulus and the bulk modulus for We shall now develop an explanation for the sys-
nonmagnetic cubic elementst = 1.4B andS= tematic change of the Poisson ratio values shown in
0.30B, which correspond te~0.364 in equations (4) Fig. 3 according to the theoretic work by Fatal.

and (5). As a resultk(v) in equations (6) and (7) [16] and Wills et al. [18]. For convenience, we use
becomes a constant and they obtaiféf~““*= " the voigt approximation [21] (see Appendix A).
k(0.364)= 0.617. In this approach, the Debye soung\ccording to equation (A3), the Poisson ratio is
velocity and Debye temperature are then directijependent on the so-called normalized shear constant
expressed in terms of the bulk modulus through thgg [18], which in turn is determined, from equation
use of the so-called scaling factor [3{™ . (A2} by C'/B and C,,/B, whereC' is the tetragonal

Because of its simplicity, this approach has now be&hear constant and it equa,(—C.,)/2. It is evident
used in many theoretical investigations to derive thegqy, equation (A3) that the larger the normalized

mophysical properties at finite temperatures for pur@wear constant, the smaller the Poisson ratio. The
elements and ordered compounds [3-7]. However, i o imental and theoretical data for the normalized
seems that this method has not been systematicall)i<iic constants are shown in Fig. 5. Note tB&
investigated. In their original work, Moruzet al. [3] j5 around 0.6 for the elements close to the maxima
selected data for only 10 nonmagnetic bcc or fcc meb—ut not for the others, an@'/B and C,/B are near

als to demonstrate the validity of this simplificationO 6 only for the tra’nsition metals4 close to the
We shall now make a thorough examination of th?n.aximum When the Cauchy relatiof,,=Ci,, is

. 127 44

i i i M—Cub
Check It there is a sealig consia for the hcp. V2l 01 OBIAINSIB = 0,6 fiom equations (AL) and
(A2). If the cubic lattice is also isotropic, i.eGs,

structure. = (C—C,2)/2, one ha<C'/B = C,4/B = 0.6. Figure
2.2.1. Cubic systems. The elastic constant data5(c) suggests that the Cauchy relation is well satisfied
for 34 cubic elements were mainly taken from thdy the elements close to the maxima but not so well

2.2. Correlation between the Debye temperature a
bulk modulus
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Table 1. The elastic constants and VRH elastic moduli for cubic elefhents

Element C;1 (Mbar) C,, (Mbar) C,4 (Mbar) B (Mbar) L (Mbar) S (Mbar) v

Li 0.139 0.117 0.099 0.124 0.183 0.044 0.346
Na 0.076 0.063 0.043 0.067 0.095 0.021 0.361
K 0.037 0.032 0.019 0.034 0.045 0.009 0.381
Rb 0.033 0.027 0.020 0.029 0.042 0.010 0.352
Cs 0.025 0.015 0.021 0.018 0.034 0.012 0.235
ce 0.250 0.150 0.200 0.183 0.337 0.115 0.241
S 0.156 0.102 0.121 0.120 0.209 0.067 0.267
Bad 0.130 0.076 0.118 0.094 0.182 0.066 0.218
La® 0.345 0.204 0.180 0.251 0.416 0.124 0.289
Tif 1.280 0.970 0.470 1.073 1.476 0.302 0.372
Hfe 1.340 0.960 0.659 1.087 1.622 0.401 0.336
\Y 2.300 1.200 0.432 1.567 2.201 0.476 0.362
Nb 2.450 1.320 0.284 1.697 2.197 0.375 0.397
Ta 2.620 1.560 0.826 1.913 2.835 0.691 0.339
Cr 3.460 0.660 1.000 1.593 3.119 1.145 0.210
Mo 4.590 1.680 1.110 2.650 4.300 1.237 0.298
w 5.170 2.030 1.570 3.077 5.170 1.570 0.282
Re? 5.620 2.660 2.619 3.647 6.424 2.083 0.260
Fe 2.300 1.350 1.170 1.667 2.753 0.815 0.290
Os 6.610 2.970 3.323 4.183 7.663 2.610 0.242
Co 2.600 1.600 1.100 1.933 3.002 0.802 0.318
Rh 4.130 1.940 1.840 2.670 4.662 1.494 0.264
Ir 5.800 2.420 2.560 3.547 6.437 2.167 0.246
Ni 2.470 1.530 1.220 1.843 2.953 0.832 0.304
Pd 2.240 1.730 0.716 1.900 2.531 0.474 0.385
Pt 3.470 2.510 0.765 2.830 3.676 0.635 0.396
Cu 1.690 1.220 0.753 1.377 2.007 0.473 0.346
Ag 1.230 0.920 0.453 1.023 1.417 0.295 0.369
Au 1.900 1.610 0.423 1.707 2.074 0.276 0.423
Al 1.080 0.620 0.283 0.773 1.121 0.260 0.349
c 10.400 1.700 5.500 4.600 11.276 5.007 0.101
Si 1.650 0.640 0.792 0.977 1.858 0.661 0.224
Ge 1.290 0.480 0.671 0.750 1.481 0.548 0.206
Pb 0.488 0.414 0.148 0.439 0.553 0.085 0.409

a Elastic constant data are from [22,23] except for Ca, Sr, Ba, La, Ti, Hf, Re, and Os.

b From [24]. The data given in [22, 23] for Ca and Sr yeild a larger bulk modulus for Ca than that for Sr. This is believed to be wrong according
the trend in IA group and the data for Be and Mg in Table 2. Also, there is no data for Ba in either Ref. 22 or Ref. 23. Recent work [24, 25]
were found for the three elements and the experimental results give most probably correct order on the calculated bulk moduli.

¢ From [25].

d From [25].

¢ For fcc structure, calculated from theoretical data@(C’'=(C,,~C,,)/2), C,4, and B(B=(C,,+2C,,)/3) reported in [18].

 For fcc structure, ab initio calculated in this work, see Section 5.

Table 2. The elastic constants and VRH elastic moduli for hexagonal eléments

Element Cy, (Mbar) C;, (Mbar) C,5 (Mbar) Cs; (Mbar) C,, (Mbar) B (Mbar) L (Mbar) S (Mbar) \Y

Be 2.920 0.240 0.060 3.490 1.630 1.115 3.129 1.510 0.033
Mg 0.593 0.257 0.214 0.615 0.164 0.352 0.583 0.173 0.289
Sc 0.993 0.397 0.294 1.070 0.277 0.558 0.966 0.306 0.268
Y 0.790 0.291 0.284 0.787 0.246 0.454 0.786 0.249 0.268
Ti 1.600 0.900 0.660 1.810 0.465 1.050 1.629 0.434 0.318
Zr 1.440 0.740 0.670 1.660 0.334 0.966 1.452 0.365 0.332
Hf 1.810 0.770 0.660 1.970 0.557 1.085 1.830 0.558 0.280
Tc? 6.117 2.187 2.075 6.450 1.966 3.484 6.152 2.001 0.259
Re 6.160 2.730 2.060 6.830 1.610 3.650 6.033 1.788 0.289
Ru 5.630 1.880 1.680 6.240 1.810 3.107 5.655 1911 0.245
o 8.945 2.492 2.456 10.164 1.622 4.755 8.103 2.511 0.276
Co 2.950 1.590 1.110 3.350 0.710 1.874 2.898 0.768 0.320
Cd 1.160 0.420 0.410 0.509 0.196 0.539 0.855 0.237 0.308
Zn 1.650 0.311 0.500 0.618 0.396 0.661 1.207 0.410 0.244
Tl 0.419 0.366 0.299 0.549 0.072 0.368 0.439 0.053 0.431
Pr 0.494 0.230 0.143 0.574 0.136 0.288 0.485 0.148 0.281
Nd 0.548 0.246 0.166 0.609 0.150 0.318 0.536 0.163 0.281
Gd 0.678 0.256 0.207 0.712 0.208 0.379 0.669 0.218 0.259
Tb 0.692 0.250 0.218 0.744 0.218 0.389 0.692 0.227 0.256
Dy 0.740 0.255 0.218 0.786 0.243 0.405 0.739 0.250 0.244
Ho 0.765 0.256 0.210 0.796 0.259 0.409 0.761 0.264 0.234
Er 0.841 0.294 0.226 0.847 0.274 0.447 0.823 0.283 0.239
Lu 0.862 0.320 0.280 0.809 0.268 0.476 0.838 0.272 0.261

a Elastic constant data are from [22, 23].
b From theoretical calculations reported in [16].
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Fig. 1. The calculated isotropic longitudinal modulig ¢ersus  F19- 2 The calculated isotropic shear moduls\ersus bulk
bulk modulus B) for cubic elements in groups I-IIA (a) and Modulus B) for cubic elements in groups I-lIA (a) and the
the rest (b). The filled circles are for those elements select&gSt (P). The filled circles are for those elements selected by
by Moruzzi et al. [3] for illustrating the empirical relation Moruzziet al. [3] for illustrating the empirical relation between

betweenL andB. SandB.

by the others. Figure 5(a) and (b) imply that the tran- The elastic behavior of the hexagonal system is in

sition metals close to the maximum are also nearlé/ . .
) . L _._sharp contrast to that of the cubic systems. In their
isotropic. This is due to the fact that these transmo[}h P y

. .“theoretical study of elastic constants of hexagonal
metals, being bcc or fec, are extremely stable agaNphnsition metals, Fastt al [18] demonstrated that
all kinds of shear deformation, which in turn i ’ )

. - Sthe hexagonal transition metals obey the Cauchy
determined by band filling [16]. relations much better than the cubic ones. This has
2.2.2. Hexagonal systems.Similarly, the elastic been shown to be due to the fact that the shape of the
constant data for hexagonal systems were collecteénsity of states for the hexagonal materials retains its
and processed. The results are available in Tablef@m to a larger extent, for all types of shears, than
and Figs 6-8. Excluding the extreme cases of Be ariddoes for many of the cubic metals. As we discussed
Tl, the Poisson ratio values for the hexagonal systenh&fore, the Poisson ratio increases with the decreasing
vary only in a relatively small range from about 0.22%f normalized shear consta®B (see equation (A2)).
to 0.325 and have an average value of 0.275. Accorélgain, here we use the Voigt approximation to ana-
ing to equation (8), one geté'®* = 0.81G0.1. lyze the data. For hexagonal systems, according to
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Fig. 4. The variation ok(v) with the Poisson ratio.

equation (A8)SB is determined byC.¢/B, C,/B, and

(C11+C+2C554C,5)/B. In this case, if the Cauchy

relation holds, i.e.,C;5=C,, and C;,=C¢=(C,;— metals except for Be and TI. This confirms Fast
C,»)/2, we haveS/B=0.6; if the system is also iso- al.’s suggestion [18] that the hexagonal metals satisfy
tropic, i.e., C;;=Cs; and C,,=C,5=C,,, we have the Cauchy relation very well and they are quite iso-
CedB=C,/B=0.6 and (C,;+C,,+2C;54C,;)/B= tropic.

3.6. The available experimental and theoretical data
for all the normalized elastic constants are shown ig
Fig. 9(a) to (d). As can be easily seen, the values of
Csd/B, C,4/B andSB are scattered around 0.6 and that Since the Debye model considers the solid as an
of (C1+C»,+2C55-4C,5)/B around 3.6 for all the elastic continuum, it is only satisfactory in the limit of

THE RELATIONSHIP BETWEEN 65(—3) AND 605(0)
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Fig. 7. The calculated isotropic shear modul8s\ersus bulk
g\Odulus B) for hexagonal non-rare-earth elements (a) and rare
earth elements (b).

Fig. 6. The calculated isotropic longitudinal modulu$ yersus
bulk modulus B) for hexagonal non-rare-earth elements (a) an
rare earth elements (b).

Bmoment calculated from a Debye spectrum with the

long wavelengths or low temperatures, and the Deb
cutoff frequencywp(n):

temperaturd,, derived from the elastic moduli corre-
sponds only to the low temperature limit of the Debye

temperature, i.e., the Debye temperature derived from o “max

heat capacity data at very low temperatures where the j o"w3dw j o"F(w)dw

T2 law holds. In real solids, due to phonon dispersions A )

and anharmonicity, the actual phone density of state, o™ = o (10)
F(w), are usually much more complicated than being

parabolic, but it is still very useful to use the Debye J w*dw J F(w)dw

spectrum to define Debye temperaturek,(n) o o
= hup(n)/ks so that thenth moment calculated from (n>—3,n#0).
F(w), normalized to 3 per atom, is equal to thth
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Fig. 8. The calculated Poisson ratio for hexagonal elements 1.0- ]
R
O Y, €
. 0.5
Forn = 0, ®" is replaced by Ing), and thus we have
_ 1 0 ) | ' | I L 1 1 1 L | ——
op(n) = | 5N (11)
9 Elements
. (©
+ 3) | 0"F(w)dw (n>—3,n#0),
0 10 T T T T T T T T T
g Hex o
% 8t -
O
Drmax <t
1 3 6r 1
In[wp(0)] = §[1 + j In(@)F(w)dw].  (12) Q
0 +N 4_
S
Obviously, when the frequency spectrum is of th +: 2+
Debye type, alb,(n) become equal and are the sam Q.
asfp. Also, in the limitn = —3, let the integrals on 0 ' ' e
the both sides of equation (10) have the same diver Elements
ing behavior, it can be readily shown thég(—3) (d)
equals the ordinary Debye temperatég[14]. The
definition of 65(n) is particularly useful in the theory 1.5— Hex © ' ' ' é

of harmonic lattice dynamics, where various thermc
dynamic properties can be expressed as power ser
containing 6p(n). For example, the vibrational 1.0
entropy has the following high-temperature expar m
sion form: @

0.5f
_ keT 1/7w)\?
3T)N|%J|:1+In<hw +24kBT 0 -l.l‘lnl.l.l.lc.)
1 /ho ?‘ 4 Elements
7960 EI’) + "']F(“’)dw = SN"BL, (13 0'ScY zr Hf Ti ReTe RuOsCoMgCdzn Be Ti
A Lu Er HoDy Tb GdNd Pr
| T 1/(65(2)\?
+in 65(0) 40\ T Fig. 9. The normalized shear elastic constants for hexagonal

- 1 (6p(4) 4 L] elements.
224 T
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If we let the above equation equal the expression fdrehavior (see Fig. 3). Cobalt, which should belong to
an ideal Debye spectrum with energy cutoff frethe second hexagonal group as discussed above, is
quency ks05/7, a temperature-dependent “entropy-actually in the first group; iron, which should belong

Debye temperatured3(T) can be defined: to the third cubic group, may actually be considered
as one in the second cubic group; and nickel, which
4 T should belong to the second cubic group, may be

SO 3NK3|: + In( - > (14) assigned to the third cubic group. Super “soft” (with

3 68(T) very largev value) elements (Au and Tl) tend to have

N 1(08(17)2 1 /93('0)4 N ] 0o(0)/6(—3) values larger than unity. Super “hard”

40\ T 22400 T ) (with very smallv value) materials (Be and C) tend

to havef,(0)/6,(—3) values smaller than that of most
Comparing equation (14) with equation (13), wenetals. We also note that the average value of the
know that6,(0) is equal tod3(), usually called the last cubic group is about the same as the average for
high temperature entropy—Debye temperaturall the hexagonal elements (0.76). This again implies
because, for many solid85(T) does not change very that thed,(0)/6,(—3) ratio is related to the elasticity
much at temperatures above ab@g(—3)/2. As a because, as we demonstrated in the last section, both
consequence, it is conventional in harmonic latticthe transition metals in the last cubic group and all
dynamics to denote the high temperature entropythe hexagonal metals exhibit nearly the same elastic
Debye temperature b§,(0) and the ordinary Debye behaviors, i.e., obeying the Cauchy relation very well
temperature or the low temperature limit of the Debyand being almost elastically isotropic.
temperature by,(—3), and we shall follow this con-
vention hereafter.

The relationship betweef,(0) and6,(—3) is not
definite according to theoretical analysis [26]. Never- First principles calculations [18-20] have shown
theless, we shall now examine the experimental datlat many of the non-equilibrium structures, which
and see if any empirical relationship exists betweemave been considered as metastable phases, are actu-
65(0) andb,(—3). Most of low temperature limit data ally dynamically or mechanically unstable at 0 K. In
are taken from Kittel [27]. The high temperaturethis case, their tetragonal shear constadfC’ =
entropy—Debye temperature values are obtained b{C,,—C,,)/2] and sometimes eve@,, are negative
fitting to the experimental entropy data with a modeht low temperatures [20] and the phonon frequencies
taking electronic, anharmonic and magnetic contrin some directions become imaginary. Therefore,
butions into account [28]. All the data are listed i9,(—3) is not definable for these phases. However,
Table 3 and plotted in Figs 10 and 11. From the ploin the CALPHAD method, one still needs these struc-
tings, some trends have been found. tures as reference states for the Gibbs energy of alloys

Hexagonal systems can be well divided into twd31]. By assuming that these phases will eventually
groups: the firstd(0) = 0.88,(—3), for Mg, Sc, Y, become dynamically, but not necessarily thermodyn-
La, Ti, Zr, Hf, and Co; the secondf,(0) = amically, stable at high temperatures due to the
0.68,(—3) for Tc, Re, Ru, Os, Zn, Cd, and Be. It isentropy effect, one may define a high temperature
interesting to note that all the elements except for Centropy—Debye temperatuég(0) for them. Generally
from the first group are on the left side of the periodispeaking, the dynamical instability or negative shear
table while all except for Be from the second groupnodulus leads to a large Poisson ratio. In order for
are on the right side. We may guess that, if it werthese phases to become dynamically stable, their
not for its extreme elastic stiffness, Be would be ifPoisson ratios must have values less than 0.5. In
the first group; and, if it were not for its electronicTables 1 and 2 or Figs 3 and 8, the largest existing
spin ordering, Co would be in the second group. Poisson ratios found for cubic and hexagonal struc-

Cubic systems may be divided into three categotures are 0.423 for Au and 0.431 for TI. Using the
ies: the first,05(0) = 1.0M,(—3), for IA metals; the elastic data for other structures in the Landolt—
secondf(0) = 0.94,(—3), for the cubic lIA, VB, Bornstein handbooks [22, 23] and the VRH formula
VIIIBc (except for magnetic Ni), IB (except for Au), given by Meister and Peselnick [21], we found two
A, and IVA (except for C) systems; the third, other unusually large Poisson ratios: 0.444 for tetra-
where 65(0)/65(—3) is in the range 0.680.87, for gonal In and 0.420 for trigonal Hg. Judging from
VIB-VIIIBb cubic elements (except for magnetic Fe)these data, we now make a further assumption that
It is interesting to note that the last group consists dbr these unstable structures to become dynamically
the transition elements located between the maxinsable, they must have a Poisson ratio of about 0.43,

4. EFFECT OF DYNAMICAL INSTABILITY

in Fig. 3. an average of the abnormally large values found so
Considering the exceptions mentioned above, far. Finally, from Table 3 we found that for Au, TI,
seems that the relationship betwey{0) and6,(—  In, and Hg, thei®,(0) values are all larger than their

3) is influenced somehow by the elastic behavior arg,(—3) values, and the ratiof,(0)/65(—3) is
magnetism. Magnetism always places metals in thHe15+0.09. Therefore, for these unstable structures,
“wrong” group and it does the same to the elastithe high temperature entropy—Debye temperature may
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Table 3. The low temperature limit of the Debye temperatige-3) and the high temperature entropy-Debye temperayfe)*

Element 05(-3), K 65(0), K 05(0)/05(—3) Element 65(-3), K 65(0), K 05(0)/05(—3)
Li 344 375 1.09 Fe 470 432 0.92
Na 158 161 1.02 Ru 600 397 0.66
K 91 9% 1.05 Os 500 325 0.65
Rb 56 60 1.07 Co 445 372 0.84
Cs 38 43 1.13 Rh 480 357 0.74
Be 1440 960 0.67 Ir 420 293 0.70
Mg 400 326 0.82 Ni 450 379 0.84
ca 230 229 1.00 Pd 274 264 0.96
Sr 147 133 0.90 Pt 240 228 0.95
Ba 110 102 0.93 Cu 343 321 0.94
Sc 360 306 0.85 Ag 225 216 0.96
'z 240 205 0.85 Au 165 176 1.07
La 142 126 0.89 Zn 327 225 0.69
Ti 420 374 0.89 cd 209 149 0.71
zr 291 261 0.90 Hg 71.9 89 1.24
Hf 252 215 0.85 B 1580 1220 0.77
v 380 359 0.94 Al 428 400 0.93
Nb 275 281 1.02 Ga 320 231 0.72
Ta 240 225 0.94 In 108 121 1.12
cr 630 500 0.79 Tl 785 ) 1.15
Mo 450 391 0.87 c 2230 1786 0.80
w 400 325 0.81 Si 645 584 0.91
Mn 410 369 0.90 Ge 374 338 0.90
Tc 504 332 0.66 Sn 200 158 0.79
Re 430 277 0.64 Pb 105 92 0.88

2 All the 65(—3) data are from [27] except for that of Y and Tc. All thg(0) data are from [28].

® The 6p(—3) data is from [29]. The value (280 K) given in [27] is discarded because it is much larger than the experimental data (240 K)
compiled in [29] and the elastic Debye temperature (257 K) calculated in [13].

¢ No experimentab,(—3) data is available. The value given here is calculated from the estimated bulk modulus ([16]) and experimental volume
data (quoted in [16]) using the approach due to Morwetzal. ([3]) with the scaling constant for hexagonal structle€>, found in this study.

9 The 65(—3) value, not available in [27], is taken from [30].

1000 T — - 600 T T ——
- Bee A
900} ©p(0)=0.860p(-3) - o ©p(0)=1.0705(-3) .~ . Si
» Cr i
700} 1 Al @Fe
400+ ,AlMo .
X 600} 1« oliy B
N N .GeA NI.Rh
S 500 7 S 300+ “Cu.W 1
o Ti o ~ ANOMER
- Wy Y - (=] .
®© 400 SM .'%9[-: Ru @ Ca’Pth
Ceo® . - _
300F  7po8% Os . 200 Au.pgfa
200 Y2z - < g
100/ -2#¥Cd i 100/, s Ba ]
0p (0)=0.680p(-3) ,.' Pb ©p (0)=0. 940y (~3)
% 500 1000 1500 SIS I ' '
0 200 400 600 800
G)D (_3) r K
®D (_3) ’ K
Fig. 10. The experimenta#(0) versusd,(—3) for hexagonal ) )
systems. Fig. 11. The experimentab,(0) versus6,(—3) for cubic
elements.
be obtained in line with Moruzzt al’s approach by 5. CASE STUDY OF Ti, Zr, AND Hf
linking it with the isotropic bulk modulus: 5.1. Total energy calculation

5 ‘B The calculations were performed by using the
65(0) = 1.151((0.43)‘(—(48%5 1’6\/5 (15) CAmbridge Serial Total Energy Package (CASTEP),
B a first principles pseudopotential plane-wave code

-0 ﬁ(48n5)1,6\/@ based on the density functional theory (DFT) [32, 33]

sk; M’ and conjugate gradients algorithm [34]. For the
exchange-correlation potentials we have chosen the
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local density approximation (LDA) [35] in the form
as parameterized by Perdew and Wang (GGA) [36,
37]. The electron-ion interaction is described using
the ultrasoft pseudopotentials generated by Lee [38]
according to Vanderbilt's scheme [39]. A plane wave
basis set with a 350 eV energy cutoff was used to
expand the electronic wave functions for Ti, while a
270 eV cutoff was used for Zr and a 290 eV cutoff
for Hf. The integration over the first Brillouin zone
was approximated by sums on a regulax8x8
Monkhorst—Pack [40] mesh of special k-points for the
bcc and fecc lattices and anx®x4 mesh for the hcp
structure. To overcome the partial occupancy problem
in metallic systems, we used a Gaussian smearing
parameter of about 0.2 eV and included the entropy
correction term in the total energy expression [41].
The structure properties were obtained by computing
the cohesive energy at several lattice constants for
different structures and then fitted to the universal
equation of state for metals [42] as

Er) = —|E|(1L+ a+ 0.0%9e?  (16)

where

r—r
a=— °

17

The equilibrium energ¥,, the Wigner—Seitz radius
ro and the length scaleare the fitting parameters,
from which the bulk modulus can be obtained by
[42]

=
1271 ,1%

(18)

The advantage of the use of the universal equation of
state is that the derivative of the bulk modulus with
pressure and the Gmeisen constant can be calculated
at the same time [42]. These parameters are important
for the calculation of other contributions to the Gibbs
energy and estimation of thermal volume expansion
of the system.

The calculated binding curves for Ti, Zr, and Hf
are shown in Fig. 12. All of them correctly give hcp
as the most stable structure. We also notice that the
curves for the hcp and bec phases intersect at a radius
smaller than that at the minima, i.e. the equilibrium
radii, which suggests that the bcc phase for all these
elements will become stable at high pressures. This
is in agreement with experimental findings [43, 44]
and other theoretical calculations [45]. The obtained

Fig. 12. The calculated binding energy for (a) Ti, (b) Zr, andequilibrium radii and bulk moduli are listed in Table

() Hf.

4. The agreement between the present calculation and
full-potential calculations [4, 46, 47] as well as the
experimental data [27, 29, 48] is good.
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Table 4. The calculated and experimental structural properties of Ti, Zr, and Hf

Element Structure Method ro(,&) B (Mbar) 65(0)(K)
Ti Hep This work 1.598 1.053 385
FP-LMTO [4] 1.625 1.076
FP-LMTO [46] 1.597 1.08
FP-LAPW [47] 1.57 1.25
PP [47] 1.561 1.33
Expt. 1.615 [27,48] 1.050 [27,29] 374 [28]
Bce This work 1.590 1.007 269
Expt. 1.180 [49] 263 [28], 272 [49]
Fcc This work 1.601 1.072 312
Zr Hcp This work 1.785 0.794 256
FP-LMTO [4] 1.791 0.884
FP-LMTO [46] 1.773 0.912
Expt. 1.771 [27,48] 0.833 [27], 0.966 [29] 261 [28]
Bcc This work 1.761 0.779 180
Expt. 0.967 [50] 178 [28], 175 [50]
Fec This work 1.787 0.768 177
Hf Hcp This work 1.693 1.220 221
FP-LAPW [47] 1.702 1.20
PP [47] 1.699 1.19
Expt. 1.748 [27,48] 1.085 [27,29] 215 [28]
Bce This work 1.673 1.176 154
Expt. 1.123 [51] 145 [28], 145 [51]
Fcc This work 1.695 1.123 194
5.2. Calculation of Debye temperatures expected, the agreement between the calculations and

8xperiment is satisfactory because the theoretically

According to our demonstration in Sections 2 an ; A
3, the high temperature entropy-Debye temperaturgalculated bulk modull and equilibrium volumeslgre
; clse to the experimental data, and the empirical

of hep Ti, Zr, and Hf can be obtained from the ab” | =" PN - )
initio calculated bulk moduli and equilibrium relation betweerd,(0) andéy,(~3) is obtained using

- e " the experimental data including those of Ti, Zr, and
Wigner—Seitz radii by Hf. We shall now have a look at the bcc and fcc struc-
tures, which are unstable and metastable in the ground

65(0) = 0.86<Hexﬁ(487;5)1/6 \/@ (19) state, respectively
ke _M It is well known that bcc Ti, Zr, and Hf are dynami-
h roB cally unstable at the ground state and become
— /6 [ Y
N 0'7%(48”5) M’ dynamically stiff and thermodynamically stable at

high temperatures [45, 47]. Thus they offer us a
The calculated results are given and compared withlique opportunity to test our assumptions made in
experimental data in Table 4 and Fig. 13. AsSection 4 by comparing the calculations with experi-
ments. The experimental Debye temperatures were

400 L 1 1 1 1 I 1 : obtained both from the inelastic neutron scattering

e Hcp e measurements [49-51] and by fitting to the high tem-

3504 m Bcec " 1i | perature entropy data with a model taking care of
electronic, anharmonic and magnetic contributions at

300 + - the same time [28]. The experimental data are given
Zr.."Ti in Table 4 and it is seen that they are close to each

x 2507 " other. Using equation (15), we have calculated the

e 200 e Hf | 65(0) for bee Ti, Zr, and Hf. The results are listed

g aZr in Table 4. They are also shown together with the
@ 4504 -.'Hf | experimental data [28] in Fig. 13. To our surprise, the
o agreement between the calculations and experiments

1004 | is remarkably good considering the speculative argu-
L ments behind the calculation method. It should be

50 - mentioned that the experimental data for bcc Ti, Zr,

g and Hf have not been considered during the formu-

0 lation of equation (15). The success on bcc Ti, Zr,

T T T T T T T
0 50 100 150 200 250 300 350 400 gnd Hf is encouraging and a similar study on bcc Sc,
05%(0), K Y, and La has been carried out and the results turned

Fig. 13. Comparison of the calculated and experimental higﬂ'Jt to be equally good [52].

temperature entropy—Debye temperats0) for hcp and bec ~ FCC _Ti, Zr and Hf are DOt thermod_ynarr_]ically
Ti, Zr, and Hf. stable in nature, but their Gibbs energy is of interest
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to the alloy phase diagram calculations [31]. Therewas concluded that the Debye temperature of a cubic
fore, we also need to know their Debye temperaslement must be calculated from the knowledge of all
tures. Considering the instability of the bcc structurgéhe elastic constants of the system. On the other hand,
against tetragonal deformation in these systems, fir the hexagonal elements we found that a fairly con-
is clear that the corresponding fcc structure istant scaling factor, 0.81, can be used to calculate the
dynamically stable. For cubic systems, as we founDebye temperature from the bulk modulus. This dif-
before, the use of the approximation method due terence between the cubic and hexagonal systems has
Moruzzi et al. [3] involves very large uncertainties. been explained using the trend found for their elastic
So the elastic constants of fcc Ti have been determeenstants, which in turn is determined by the details
ined in this study by calculating the elastic energypf their density of states [16, 18]. In order to obtain
density as a function of small strains applied to théhe high temperature entropy—Debye temperature
equilibrium lattice [15]. The calculated results aref,(0), the experimental data available for almost all
C,.=1.28,C, = the unary systems have been studied and some
0.97, andC,, = 0.47, from which the Poisson ratio empirical relations betweef(0) andf,(—3) have
is obtained using the VRH approximation [21] andbeen observed. For those structures that are dynami-
it equals 0.372. This result has already been plottezhlly unstable at low temperatures, we proposed a
in Fig. 3 together with theoretical results [16] forway to obtain their high temperature entropy—Debye
fcc Hf (see also Table 1). With these values for Ttemperatures from the calculated isotropic bulk mod-
and Hf and the distinct trend shown in Fig. 3, weuli by using a scaling factor of 0.5. The methods have
may estimate that the Poisson ratio of fcc Zr ideen applied to calculate the Debye temperatures for
around 0.40. Using equation (9), the&#,(—3) hcp, bcc, and fcc Ti, Zr, and Hf. First principles
values have been calculated. Furthermore, fcc Ti, friseudopotential plane-wave calculations have been
and Hf most probably belong to the second grouperformed and the binding energy curves have been
in cubic systems with regard to the relationshipbtained. The bulk moduli for different structures
betweend,(0) andd,(—3), so we adopted the fol- were derived by using the universal equation of state
lowing relation 65(0) = for metals. The elastic constants of fcc Ti were also
0.946,(—3) to calculate theif(0). The calculated computed and then used to calculate the Poisson ratio
results are given in Table 4. It is interesting to seéor the adjustment of the scaling factor. The calcu-
that, contrary to our usual assumption that the fclated Debye temperatures agree very well with the
and hcp structures should have very similar physicablues derived from the high temperature experi-
properties, the high temperature entropy—Debymental entropy data.
temperatures of fcc Ti and Zr are 20%0% smaller

than those of the hcp structures, owing to the fact

that their fcc sturctures have relatively large POiSSdﬁcknowIedgemen&sThe authors wish to thank Prof. M. Hillert
or his help in the preparation of this paper. The financial sup-

ratio values or Smal_l shear ConStanFs' Such IOY)’ort from the Foundation for Strategic Research (SSF) in
Debye temperatures imply that there is a tendencyyeden is greatly acknowledged.

for their fcc structures to become stable at high tem-
peratures due to the entropy effect, but they remain
metastable since the vibrational entropy alone is not
enough. This can be seen from the fact that the cor; Dinsdale, A.Calphad 1991,15, 317.
responding bcc structures have either an even lowes. chase, M. W., Ansara, I., Dinsdale, A., Eriksson, G.,

or about the same Debye temperature while, at the Grimvall, G., H@lund, L. and Yokokawa, H.Calphad
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