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QUASI-2D MODEL OF HOMOGENEOUS GRAIN BOUNDARY PHASE NUCLE-

ATION

To begin the treatment of the quasi-2D nucleation theory, two phases: β (the parent

phase) and α (the new phase) are defined as shown in Fig. 1 and the actual structure of the

respective phases is shown in Fig. 3. The difference in grain boundary energy as a result

of the nucleation of a new phase is written as ∆γαβ = γα − γβ. The length of the α phase

nucleus is defined as l. As Fig. 1 infers the presence of the α nucleus within the β phase

creates both a dislocation and a line force (due to the difference in grain boundary stress)

at the interface of the two phases, which will both generate an elastic field of their own.

The change in energy per unit length as a result of the nucleation of the α phase can be

expressed as

E
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2D

= ∆γαβl +
E
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dd
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pp
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(l) + 2Γαβ, (1)

where E
L

dd
(l) is the elastic interaction energy between the two dislocations generated by

the formation of the α phase, E
L

pp
(l) is the elastic interaction energy of the two line forces,

E
L

dp
(l) is the interaction between the dislocation and line force and Γαβ is the energy per

unit length of the grain boundary phase junction: it is not a function of nucleus size for

this 2D example. It should be noted that Γαβ implicitly includes the core energies of the

two dislocations created by the grain boundary phase junction, which does not include the

energy of the elastic field.

The elastic interaction between the two dislocations generated from the nucleation process

can be expressed as [1]

(2)
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(b1 × ξ) · (b2 × ξ)

1− ν

]
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− µ

2π(1− ν)l2
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(b1 × ξ) · l

] [
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,

where b1 and b2 represent the Burgers vectors of the two dislocations, ξ the dislocation

line direction, µ the shear modulus of the bulk material, ρ the dislocation core radius (and

is assumed to be b), and ν Poisson’s ratio. For the purposes of this work we will assume

that the dislocation generated at the phase junction is a general mixed dislocation: b1 =

b1ê1 + b2ê2 + b3ê3, b2 = −b1ê1 − b2ê2 − b3ê3, l = lê1 and ξ = 1ê2. As there is no Burgers
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FIG. 1. Illustration of the important interactions to consider in the homogeneous nucleation of the

α grain boundary phase (red region). It should be noted that ê2 is going into the page. Apart from

the difference in grain boundary energy between the two phases, there are also elastic interactions

that arise from the presence of dislocations (due to geometric constraints) and line forces (due to

differences in grain boundary stress) at the phase boundaries.

content in the grain boundary before the nucleation of the new grain boundary phase it

must be true that b1 + b2 = 0, due to the conservation of Burgers vectors. In the case of a

general mixed dislocation Eq. (2) simplifies to

E

L

dd

(l) =
µ

2π

(
b2

2 +
(be)2

1− ν

)
ln (l/ρ) + Cdd (3)

with be =
√
b2

1 + b2
3 being the edge component of the dislocation and b2 being the screw

component, and Cdd being the remaining terms which are not dependent on l.

A line force will exist at the boundary between the two phases of the form f1 = ±(τα11 −

τβ11), with the sign changing depending on if the left (−) or right (+) phase junction shown

in Fig. 1 is considered. The displacement field associated with the line force is found using

the following expression [2]
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ui(x) =

∫
GPS
ij (x− x′)fjδ(x1 − x′1)δ(x3 − x′3)dx′, (4)

with all subscripts pertaining to a 2D space (i ∈ {1, 3}), x = x1ê1 + x3ê3, δ being Dirac’s

Delta function and GPS
ij being the elastic Green’s function of an isotropic medium for a plane

stress problem, which is expressed as [2]

GPS
ij (x) =

1

8πµ(1− ν)

(xixj
x2
− (3− 4ν)δij ln(x)

)
. (5)

As the elastic interaction between two line forces, in general, is given by −f (1)
j u

(2)
j (lê1), the

interaction in this case should be of the form

E

L

pp

= fifjG
PS
ij (lê1). (6)

In this case f1 = τα11 − τ
β
11. By combining Eqs. (4-6) Epp is found to be

E

L

pp

(l) = − f
2
1 (3− 4ν)

8πµ(1− ν)
ln(l/ρ) + Cpp, (7)

with Cpp representing all terms that are not dependent on l.

Finally, the elastic interaction between the dislocation and force-monopole will be con-

sidered. The elastic interaction of a dislocation with a line force is given by

E

L

dp

= −2f1u
dis
1 (lê1). (8)

with udis being the displacement field of the dislocation located a length l away from the

line force. The displacement field of an edge dislocation is given by[1]
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)
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′
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2
3

)
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3
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]
, (9b)

where x′1 = x1 cos(φ)+x3 sin(φ) and x′3 = −x1 sin(φ)+x3 cos(φ), with φ being the angle that

makes the expression for the edge components of the dislocation be = be cos(φ)ê1+be sin(φ)ê3

true. Combining equations (8) and (9) results in

E

L

dp

= −f1b3(1− 2ν)

2π(1− ν)
ln(l/ρ) + Cdp (10)
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Combining the three elastic interaction terms together with the difference in grain bound-

ary energy between the two phases, the energy of the system with a nucleus is given by

(11)

E

L

2D

= ∆γαβl +
1

8π(1− ν)

(
4µ
[
(1− ν)b2

2 + (be)2
]
− (fα1 − f

β
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β
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)
ln(l/ρ) + 2Γαβ + C.

For ∆γαβ < 0, E decreases for large l and increases for small. A maximum at lc represents

the nucleation barrier. The size of the critical nucleus is determined by solving dEnuc(l)
dl

= 0

for l, which gives

lc =
4
[
(1− ν)b2

2 + (be)2
]
µ2 − 4µb3f1(1− 2ν)− f 2

1 (3− 4ν)

8πµ∆γαβ(ν − 1)
. (12)

Using molecular dynamics simulations in combination with Eq. (11) we can calculate

Γαβ. The simulations consist of constructing a grain boundary phase nucleus (α) within an

existing grain boundary phase (β) and then calculating the change in grain boundary energy

as a function of the nucleus length. Γαβ is calculated by finding the value of Γαβ that gives

a best fit between Eq. (11) and the results of the molecular dynamics simulations.

The grain boundary phase junction was created by first generating a bicrystal with a

kink of height 3a0/2 along the grain boundary. The dual-phase system was constructed by

displacing the top crystal relative to the lower crystal by t1 = 1.704Åê1+2.057Åê2, as shown

in Fig. 2a: t1 corresponds to a displacement that will give the β phase upon relaxation.

Then a region of the upper crystal, of length l along the ê1-direction, was further displaced

by t2 = 0.852Åê1. The combination of shifts, t1 + t2, should result in the formation of the

α phase in the given region upon relaxation. The combined system is then relaxed such

that the maximum force between atoms was 10−5 eV/Å, with the resulting final dual-phase

system illustrated in Fig. 2b.

3D MODEL OF HOMOGENEOUS GRAIN BOUNDARY PHASE NUCLEATION

A three-dimensional model of homogeneous grain boundary phase nucleation is developed

for a circular grain boundary phase nucleus with a radius, R. The equation governing the
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FIG. 2. Illustration of the setup of the molecular dynamics simulations used to validate the classical

nucleation theory. Panel a depicts two crystals, separated by an interface with a kink of height h,

being displaced relative to each other. By displacing a section of the upper crystal of length l by t2

and the rest of the upper crystal by the vector t1 as shown in Panel a, a dual phase grain boundary

is created after relaxing the system, as shown in Panel b. The core of the grain boundary junction

is signified by the orange region.

nucleation energy will be of the form

Enuc(R) = πR2∆γαβ + 2πRΓ̄αβ + Edd(R) + Edp(R) + Epp(R). (13)

The derivation of the elastic terms, Edd(R) + Edp(R) + Epp(R), as well as the line energy

term, 2πRΓ̄αβ, follow. We assume in the 3D model that the grain boundary phase junction

is circular, and thus the dislocation associated with it is a dislocation loop. The self-energy

of a dislocation loop is expressed as [1]
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FIG. 3. Panel a shows the α phase (ground state) and panel b shows the β phase (metastable).

Edd =
µ

8π

∮
C1=C

∮
C2=C

(b · dξ1)(b · dξ2)

r
+

µ

8π(1− ν)

∮
C1=C

∮
C2=C

(b×dξ1)·T ·(b×dξ2), (14)

where Tij = 1
r

(
δij − rirj

r2

)
and the rest of the variables are defined in Fig. 4. The line integral

shown in Eq. (14) will produce an infinite energy if evaluated as is, due to the self-interaction

of a differential segment with itself. Thus, a core radius must be defined to allow for a finite

self-energy. This approximation turns Eq. (14) into
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FIG. 4. Graphical representation of a grain boundary phase nucleus and variables involved in Eq.

(14), (17), and (21), with C defining the contour of the grain boundary phase junction.

Edd(R) =
µR2

8π

∫ 2π

0

∫ φ2+2π−ρ/R

φ2+ρ/R

[b · dξ1(φ1, φ2)] [b · dξ2(φ1, φ2)]

r(φ1, φ2)
dφ1dφ2

+
µR2

8π

∫ 2π

0

∫ φ2+2π−ρ/R

φ2+ρ/R

[b× dξ1(φ1, φ2)] · T (φ1, φ2) · [b× dξ2(φ1, φ2)]

1− ν
dφ1dφ2.

(15)

Evaluation of this integral for the system in question results in

Edd(R) =
µR

4(1− ν)

[(
2b2

3 + (bp)2(2− ν)
)

ln

(
4R

ρ

)
− 2
(
b2

3 + (bp)2(2− ν)
)]

, (16)

with (bp)2 = b2
1 + b2

2. ρ is the core radius of the dislocation, and is assumed to be of the

magnitude b.

For the line force-line force interaction, the following equation gives the elastic self-energy

of a line force loop

Epp(R) = −
∮
C1=C

∮
C2=C

fj(x
1)Gjk(x

1 − x2)fk(x
2)dx1dx2, (17)

with G being the three-dimensional elastic Green’s function for an isotropic system, and

defined as

Gij(x) =
1

16πµ(1− ν)

(
(3− 4ν)

x
δij +

xixj
x3

)
. (18)

Using the same approach for evaluating the line integral of the dislocation-dislocation inter-

action, the line integral in Eq. (17) becomes
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Epp(R) = −fjfk
∫ 2π

0

∫ φ2+2π−ρ/R

φ2+ρ/R

Gjk(φ1, φ2)dφ1dφ2. (19)

Taking into account that in the case of the circular line force loop, f = f1 cosφê1 +f2 sinφê3

meaning that by using the same approach to solve Eq. (17) as that used to determine Eq.

(15) the line force self-energy is expressed as

Epp(R) = − R

32µ(1− ν)

[(
f 2(13− 16ν)− 2f1f2

)
ln(4R/ρ)− 4f 2(7− 8ν)

]
, (20)

where f 2 = f 2
1 + f 2

2 . It should be noted that f2 = (τα22 − τ
β
22).

Lastly, Edp(R) can be expressed as

Edp(R) = −2

∮
C

fj(x)udisj (x)dx, (21)

where udisj is the displacement field of the circular dislocation loop. The displacement field

of the circular dislocation loop is expressed as [1]

udism (x) = − 1

8π

∮
C

εmik
2bi
r
dx′k −

1

8π(1− ν)

∮
C

biεijkTmjdx
′
k, (22)

with ε being the Levi-Civita tensor. By combining eqs. (21) and (22) the interaction energy

is found to be

Edp(R) = −(f1 + f2)b3R

2(1− ν)

(
(1− 2ν) ln(4R/ρ)− 3 + 4ν

)
. (23)

As Γαβ contains the dislocation core energy of the grain boundary junction, it is reason-

able to assume that it depends on the Burgers vector and dislocation line direction. The

contribution of the line energy to the nucleation energy of a 3D system requires an effective

value of the line energy:

Γ̄αβ =
1

2π

∫ 2π

0

Γαβ(b, ξ(φ))dφ, (24)

with the dislocation line direction, ξ, being a function of φ, specifically ξ = − sinφê1 +

cosφê2. For a better understanding of the dependence of ξ, Fig. 4 can be of help.

In developing a functional form for Γαβ(φ) it is helpful to note that axes of symmetry exist

along the ê1 and ê3 directions in the form of a two-fold rotation and mirror plane normal
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respectively [3]. Applying these two symmetries to Γαβ mean that the grain boundary phase

junction energy must be an even function with respect to φ, Γαβ(φ) = Γαβ(−φ).

Assuming that the function is continuous and differentiable it also means that Γαβ(φ = 0)

and Γαβ(φ = π) must be local extrema. Owing to the fact that the Γαβ is calculated

from molecular dynamics simulations, which use a dislocation dipole configuration to derive

the core energy of the phase junction, we cannot differentiate between Γαβ(φ = 0) and

Γαβ(φ = π), thus we approximate that they are equal.

If Γαβ(0) and Γαβ(π) are local minima (maxima), there must be a local maximum (mini-

mum) along the domain φ ∈ (0, π). We postulate that the other local maximum (minimum)

is situated at φ = π/2 and φ = 3π/2. It is found that Γαβ(0) = Γαβmin = 0.383 eV/Å and

Γαβ(π/2) = Γαβmax = 1.73 eV/Å. A function that fits the above requirements is

Γαβ(φ) =
Γαβmax − Γαβmin

2
[1− cos(2φ)] + Γαβmin. (25)

Combining Eqs. 24 and 25 results in the line energy contribution to be 2πR
(Γαβmax+Γαβmin)

2
.

COMPUTATIONAL DETAILS OF MOLECULAR STATICS AND DYNAMICS

SIMULATIONS

The setup for the simulations used to validate the 3D CNT are similar to those used to

validate the quasi-2D CNT, with the exception being that instead of creating a rectangular

region containing the nucleating grain boundary phase, the nucleating phase exists in a

circular region of the grain boundary defined by a radius, R. The dimensions of the system

are 100
√

29a0× 500a0× 6
√

29a0 with the system being periodic in the ê1 and ê2 directions.

Like in Fig. 2, the grain boundary phase junction is created by first generating a bicrystal

that only contains the β phase, which is obtained by displacing the top crystal relative to

the lower crystal by t = 1.704Åê1 + 2.057Åê2, then a cylindrical region is defined that runs

through the entire upper crystal with its axis pointed along the ê2 direction and which has

a radius of R. This cylindrical region is then shifted relative to the rest of the upper crystal

by t = 0.852Åê1. The resulting structure contains approximately 17.5 million atoms, thus

a full structural relaxation is exceedingly difficult to achieve. As a result, the structure was

relaxed by running the structure at 1000 K for 1.25 ns, and then quenching the structure

from 1000 K to 0 K over the course of 0.5 ns.
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DSC LATTICE

In order to determine the admissible disconnections that can exist at a grain boundary

the displacement shift complete (DSC) lattice must be known, as disconnections are lattice

vectors on the DSC lattice. All points on the DSC lattice can be described by a linear

combination of the two sets of lattice vectors that form the dichromatic pattern associated

with the given GB of interest [4]:

RDSC = ma1 + na2 + pa3 + uq1 + vq2 + wq3, (26)

where m, n, p, u, v, and w integers, while aj and qk are the sets of lattice vectors associated

with the two lattices that form the dichromatic pattern. Using the Eq. (26) a DSC lattice

can be generated and its primitive lattice vectors then determined.

CALCULATION OF BURGERS VECTOR OF GRAIN BOUNDARY PHASE JUNC-

TION

While any circuit can be drawn to find the Burgers vector, from a practical point of

view, in general, the simpler the circuit, the easier it is to calculate. Such a circuit is shown

schematically in Fig. 5a, depicting a grain boundary phase junction, but with a simplified

Burgers circuit. The Burgers circuit in Fig. 5a consists of four vectors: vT and vB, which

do not cross the grain boundary; vβ and vα, which cross the grain boundary through the β

and α phase respectively.

The Burgers circuit is the closure failure of the circuit after the current system has

undergone cuts in the material. One cut, or many can be used. In the case of the phase

junction shown in Fig. 5a we will proceed by making a cut in the material such that the

result of this cut is that vβ → V β, vT → V T , vα → V α and vB → V B; where V T and

V B are lattice vectors of equal length, while V β and V α are the vectors crossing the grain

boundary phases when mapped to a bicrystal with only an β or α phase present. Applying

the transformation rule explained above gives

b = −V α − V β. (27)

11



FIG. 5. Illustration of Burgers circuit used to calculate the Burgers vector of the grain boundary

phase junction. Panel a depicts a closed circuit in the current system. Panel b shows the vector

vβ in Panel a transformed into the reference system. Panel c shows the vector vα in Panel a

transformed into the reference system.

When applying Eq. (27) the Burgers vector is found to be b = 0.600Åê1 + 0.423Åê3 from

the specific system analyzed in the main text.
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