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The Mpemba effect describes the situation in which a hot system cools faster than an identical
copy that is initiated at a colder temperature. In many of the experimental observations of the
effect, e.g. in water and clathrate hydrates, it is defined by the phase transition timing. However,
none of the theoretical investigations so far considered the timing of the phase transition, and most
of the abstract models used to explore the Mpemba effect do not have a phase transition. We use the
phenomenological Landau theory for phase transitions to identify the second order phase transition
time, and demonstrate with a concrete example that a Mpemba effect can exist in such models.

I. INTRODUCTION

Under appropriate conditions, a cup of hot water may
freeze faster than an identical cup of cold water. This
counter intuitive phenomenon was documented as early
as 2300 years ago [1, 2], but is named after A. Mpemba
– a Tanzanian school student that rediscovered it in the
60’s [3]. Several mechanisms were suggested to explain
the Mpemba effect in water, including: evaporation [4, 5],
dissolved gases and solids [6], convection flow [7], super-
cooling [8] and anomalous relaxation of hydrogen bonds
[9].

In recent years the term “Mpemba effect” was ex-
tended, and it is now used to describe a wide range of
non-monotonic relaxation phenomena. These include ex-
perimental observations of hot systems that undergo a
phase transition before cold systems in non-water sub-
stances (Polymers [10], Clathrate hydrates [11]), as well
as in other types of phase transitions (Magnetic tran-
sition in alloys [12] and various spin models [13–17]),
relaxation towards equilibrium without a phase transi-
tion that is non-monotonous in the initial temperature
[18–22] and similar effects in relaxation towards a non-
equilibrium steady states in driven molecular gas models
[23–28].

Significant progress was recently achieved in under-
standing non-monotonic relaxations towards both equi-
librium and non-equilibrium states, including a careful
mathematical formulation of the problem [18, 29], pre-
diction of an inverse Mpemba effect where a cold system
heats up faster than a hot one [18, 23], and of the “strong
Mepmba effect” where an exponentially faster relaxation
can be achieved from specific initial temperatures [20].
Some of these theoretical predictions were experimentally
verified in [30, 31]. These results focus on the long time
behavior of the system, and are therefore not informative
for experiments and numerical simulations where the sys-
tem undergoes a phase transition after a finite time, as in
water, clathrate hydrates, polymers and magnetic alloys.

In this work we present a theoretical model for the
Mpemba effect through a second order phase transition.
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We first define, in the context of Landau theory, the ex-
act phase of the system throughout its relaxation pro-
cess, which is naturally far from equilibrium. With this
definition, the phase transition can be associated with a
concrete time for any initial condition. Using this “time
to phase transition”, a Mpemba effect can be defined and
identified. A specific mechanism for the Mpemba effect
through such a transition is then demonstrated with a
concrete example of a Landau free energy.

Throughout the manuscript we limit the discussion to
the Mpemba effect through a second order phase transi-
tion. To keep the description simple, from this point on
we use the term Mpemba effect to describe the scenario
in which it takes less time for an initially hot system to
undergo a second order phase transition in comparison
to an initially colder system.

II. NON-EQUILIBRIUM PHASE TRANSITION
AT FINITE TIME

The existence of the Mpemba effect considered in this
manuscript is determined by the time it takes the system
to undergo a second order phase transition as a function
of the initial temperature, when the system is quenched
to a cold environment. However, during the relaxation
process the system is generically not in an equilibrium
state associated with any temperature, and it is not al-
ways possible to define the phase of the system in these
cases. Moreover, in many types of dynamics (e.g. coars-
ening dynamic [32]), the phase transition happens only
in the infinite time limit. Other finite time phase transi-
tions out of equilibrium are not associated with the mean
value of the order parameter, but rather with its fluctu-
ations [33], and are therefore not useful in the context of
the Mpemba effect. For these reasons, we first suggest
a simple definition for the moment in time at which the
phase transition happens when the system is coupled to
an infinite, memory-less heat bath, and which is finite in
some relevant class of models. In the spirit of the Lan-
dau theory, we consider mean-field theories, i.e. models
without any spatial dependence.
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A. The Phases of the System

Consider a system that can be characterized by a set
of macroscopic parameters x1, . . . , xn. These are often
represented, for short handed, as ~x = (x1, ..., xn). Some
of these parameters, say x1, . . . , xm are the order param-
eters, i.e. their value determines the phase of the system.
For simplicity, in what follows we assume that there is a
single order parameter in the system, x1. Upon quench-
ing the system to a different temperature, the macro-
scopic parameters evolve in the configuration space of ~x
towards their new equilibrium value. We denote the equi-
librium value of ~x that corresponds to some temperature
T by ~xeq(T ).

Typically, an order parameter of a second order phase
transition is defined such that it is zero in one phase and
non-zero in another phase. In our case the two phases
are therefore characterized by the equilibrium value of
the order parameter,

xeq1 (T )

{
= 0, disordered, T ≥ Tc
6= 0, ordered, T < Tc

(1)

where Tc is the critical temperature of the model. For
simplicity we consider here the common case where above
Tc the system is disordered and consequently xeq1 = 0,
whereas below Tc the system is in one of the ordered
phases and xeq1 is either negative or positive. We com-
ment on the less common case where the system is or-
dered for T > Tc and disordered for T < Tc in Sec. V.

We assume that both the equilibrium and non-
equilibrium values of these order parameters are deter-
mined by the Landau free energy which we discuss in
what follows.

B. Landau Free Energy

We denote the Landau free energy of the system, which
is defined for any value of the macroscopic parameters ~x,
by f(~x;T ). The equilibrium configuration of the system
at temperature T corresponds to the global minimum of
f(~x;T ), namely

~xeq(T ) = arg min
~x

f(~x;T ). (2)

To date, there is no single theory for the dynamics
of the macroscopic parameters under all non-equilibrium
conditions, but several models are often used to describe
specific non-equilibrium scenarios. To describe the relax-
ation towards an equilibrium state, we use the common
assumption [32] that the dynamic of the xi parameters is
given by the negative gradient of f(~x;T ) and a stochastic
noise,

ẋi = −∂f(~x;T )

∂xi
+ ξi. (3)

This form corresponds to Model A in the classification of

Hohenberg and Halperin (see Eqs. (4.1) in Ref. [34]). ~ξ
is a thermal noise associated with the external bath tem-
perature, such that the equilibrium probability distribu-
tion is the expected Boltzmann distribution. Moreover,
at each extremum point of f(~x;T ), the first term on the
right hand side of the above equation vanishes. Thus,
without a noise term, all of these points were stationary.
This is the desired property of the minima of the free
energy, but not of its other types of extremum points.
The noise term remedies this issue: the system remains
in the vicinity of its minima, given that the noise is not
too strong, but not near any other types of fixed points.

C. The Phase of a Non-Equilibrium State

Consider a quench protocol that takes a system that is
prepared in equilibrium at T0 > Tc, corresponding to the
disordered phase, and connects it to a bath at Tb < Tc,
corresponding to the ordered phase. Thus the system is
initiated at x1(t = 0) = 0, and ends at x1(t =∞) 6= 0.

To identify the phase transition time, it is natural
to consider the moment in time at which the system
has changed from the disordered phase to the ordered
phase, manifested in the growth of |x1|. By Eq. (3),
the dynamic of x1 is dictated by the effective free en-
ergy f(~x;T ) that acts as a potential that guides the sys-
tem towards its equilibrium state. As we assume spon-
taneous symmetry breaking around x1 = 0, namely that
∂x1

f(x1 = 0, x2, ..., xn;T ) = 0, the growth of |x1| is de-
termined by the second derivative in the x1 direction of
f(~x;T ) around the hyper-plane (x1 = 0, x2, . . . , xn). For
∂2x1

f(x1 = 0, x2, . . . , xn;T ) > 0, the effective free en-

ergy confines x1 around x1 = 0, whereas for ∂2x1
f(x1 =

0, x2, . . . , xn;T ) < 0, the effective free energy pushes x1
towards a non-zero value. In the latter case, the spe-
cific noise realization breaks the symmetry and dictates
whether x1 becomes positive or negative.

We therefore define the phase transition time tc as the
smallest time t that solves the following equation:

∂2x1
f
(
〈~x(t)〉;Tb

)
= 0, (4)

where Tb is the bath temperature, ~x(t = 0) is sampled
from the equilibrium corresponding to the initial tem-
perature, ~x(t) follows the dynamic in Eq. (3) and where
〈· · · 〉 denotes averaging over the noise realizations sam-
pled from the bath.

In the Supp. Info. (App. A) we demonstrate this defi-
nition of tc for a concrete, microscopic model – the mean
field anti-ferromagnetic Ising model under the Glauber
dynamics [35]. We show the following properties of the
phase transition time tc: (i) It can be defined in a more
general setting of relaxation dynamics than considered
in Eq. (3), namely a dynamic which is not the gradient
of the free energy; (ii) It is finite even in the thermo-
dynamic limit; and (iii) Its variance decreases with the
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system size, and therefore tc is well behaved in the ther-
modynamic limit.

III. THE MPEMBA EFFECT

A. Definition

Once the exact time at which the phase transition hap-
pens has been defined, the definition of the Mpemba
effect follows. We say that a Mpemba effect exists in
the system if: (i) The system has a phase transition at
some critical temperature Tc, such that Eq. (1) holds; (ii)
There exist two initial temperatures above the critical
temperature, T i

hot > T i
cold > Tc, and a final temperature

below it, T f < Tc, such that when quenched to the cold
temperature T f , the time tc to reach the phase transition
as defined in Eq. (4) is smaller for the system initiated at
the higher temperature T i

hot than for a system initiated
at the lower temperature T i

cold.

B. Systems With One Macroscopic Parameter

In the case of n = 1, there is only one macroscopic
parameter x1 which is therefore also the order parameter.
This means that the effective free energy has, in the close
vicinity of the phase transition, the familiar form

f(x1;T ) = a0(T − Tc)x21 + b0x
4
1, (5)

where a0, b0 > 0 are phenomenological constants and the
free energy is expanded around the phase transition point
only to the fourth order in x1. Indeed, for T > Tc there is
one minimum at x1 = 0 corresponding to the disordered
phase, whereas for T < Tc there are two minima at x1 =
±
√
a0(T − Tc)/b0.

For any initial temperature T0 > Tc, the initial config-
uration of the system is given by 〈x1(t = 0)〉T0

= 0. For
any bath temperature Tb < Tc the effective free energy is
unstable at x1 = 0, namely ∂2x1

f(〈x1(t = 0)〉;Tb)|x1=0 <
0, and therefore by the definition of tc, Eq. (4), the phase
transition happens instantaneously.

Hence, in mean field models that have a single macro-
scopic parameter, as the ferromagnetic Ising model, all
hot temperatures cross the phase transition at the zero
time, and consequently there cannot be a Mpemba effect
as defined above.

C. Systems With Two Macroscopic Parameters

As we next show, when the configuration space has
at least two dimensions, the phase transition can occur
at some non-zero time. Therefore, in such systems the
Mpemba effect is plausible.

Consider the case where there are two macroscopic pa-
rameters, ~x = (x1, x2), with x1 being the order parameter

that corresponds to a spontaneous symmetry breaking,
whose value determines the phase of the system accord-
ing to Eq. (1). We assume that f is symmetric with
respect to x1 = 0 at all temperatures. In this case, for
fixed values of x2 and T , f(x1, x2;T ) as a function of x1
has either a minimum or a maximum at x1 = 0. Thus, it
is possible that for some temperature T the free energy
surface has a range of x2 values for which f(x1, x2;T )
is stable with respect to x1, and a different range of x2
values for which it is unstable with respect to x1. If in
this case a system is initiated in the stable region, and
its dynamic, governed by Eq. (3), guides the system to
the unstable region, a phase transition happens in the
system after a finite time.

The above scenario is demonstrated by the free energy
surface plotted in Fig. 1(a). This specific free energy is
constructed in Sec. IV. The black line, which we denote
by x2 = xst2 , separates between a stable region (gray)
and an unstable region (orange). Initial conditions in
the stable region, such as the blue and red dots, would
stay confined around the x1 = 0 line, for most noise real-
izations. Once the system crosses to the unstable region,
x1 is no longer confined, and the noise pushes the sys-
tem towards one of the minima. An example for such a
trajectory is plotted in purple in Fig. 1(a). Therefore, in
this two-dimensional configuration space different initial
conditions cross the phase transition at different non-zero
finite times. This implies that a Mpemba effect is plau-
sible. In the next section we provide a concrete example
that demonstrates the Mpemba effect as defined above.

IV. EXAMPLE OF A SYSTEM WITH A
MPEMBA EFFECT

A. Required Features for the Mpemba Effect

In this section we show that a Mpemba effect can exist
in a system with two macroscopic parameters, namely for
~x = (x1, x2). Before providing a concrete example, let us
first explain the basic idea, demonstrated in Fig. 1. To
this end, we consider for each temperature T the corre-
sponding 2d free energy surface, f(x1, x2;T ). The global
minima of this surface dictates the equilibrium values,
xeq1 (T ) and xeq2 (T ). At some critical temperature Tc,
xeq1 (T ) changes from xeq1 = 0 at T > Tc to xeq1 6= 0
at T < Tc. We denote x∗2 ≡ xeq2 (Tc), namely the value of
xeq2 at the critical temperature.

To observe the Mpemba effect, the system is initiated
at two different temperatures in the hot temperature
phase, where xeq1 = 0. The difference between the ini-
tial conditions at T i

hot and T i
cold is therefore not in their

x1, but rather in their x2 values. We construct f(~x;T )
such that xeq2 (T ) is non-monotonic in T , and is maximal
at Tc, so that x∗2 is the maximal equilibrium value of x2.
This feature exists for example in the mean field anti-
ferromagnet Ising model in the presence of a weak exter-
nal magnetic field (see [36] as well as the Supp. Info. A).
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FIG. 1. A concrete example of a free energy demonstrating both a phase transition occurring after a finite time and a Mpemba
effect. The explicit form of the free energy f(x1, x2;T ) is given in Eqs. (7, 8, 11, 12).
(a) The free energy surface evaluated at T = 0.1 < Tc. The green line, x1 = 0, corresponds to all equilibrium values at the
disordered phase. The purple line is an example of a trajectory which starts at ~xeq(Tcold) (the blue dot), and follows Eq. (3)
for some random noise realization. The stability in the x1 direction along the x1 = 0 line changes throughout the trajectory
– the black line separates between the stable region (gray) and the unstable region (orange). Crossing this line defines the
phase transition, and it happens at a non-zero finite time. The red and blue dots correspond to hot and cold initial equilibria
in the disordered phase, i.e. to ~xeq(T i

hot) and ~xeq(T i
cold), respectively. The black dots correspond to the symmetric equilibria

of the final energy T f = 0.1. Observing the trajectory governed by the free energy surface, it is clear that as the colder initial
condition must first reach the hotter initial condition, the colder initial condition takes more time, and so this system exhibits
the Mpemba effect.
(b) The equilibrium line ~xeq(T ) of the free energy determined by Eq. (2). Temperatures range from T = 0 (blue) to T = ∞
(red). The black, blue and red dots correspond the same dots of panel (a), i.e. to ~xeq(T f ), ~xeq(T i

cold) and ~xeq(T i
hot), respectively.

It is clear that the hotter initial condition is closer to T f than the colder initial condition. The black line corresponds to the
black line in panel (a), namely it separates the stable region and the unstable regions at T f = 0.1.
(c) The free energy surface evaluated at T = 1.4 > Tc. This temperature is denoted as T i

hot and therefore the minimum
of f(~x;T i

hot) is obtained by ~xeq(T i
hot) as seen in the plot. The green line corresponds to the symmetry line x1 = 0. It is

demonstrated that x1 = 0 is stable for all values of x2 at this temperature. The stability of x1 = 0 holds for all temperatures
above Tc.

The “equilibrium line” of the model described in what
follows is plotted over the (x1, x2) plane in Fig. 1(b), and
it demonstrates this feature. The non-monotonicity of
xeq2 (T ) gives the following property. Consider the black,
blue and red dots in Fig. 1(b). The three dots correspond
to the equilibria of T f < T i

cold < T i
hot, respectively. It is

seen that between the two points in the disordered phase,
xeq2 (T i

hot) and xeq2 (T i
cold), the one that is closer to the fi-

nal equilibrium state xeq2 (T f ) is actually the hotter point
xeq2 (T i

hot). This is a crucial feature for the Mpemba effect
in this system.

The next feature we describe regards the stability of
the system, determined by f(x1, x2;T ), with respect to
its symmetric coordinate x1. At the final cold tempera-
ture T f , the free energy surface should have the following
property: the symmetry line of the system, x1 = 0 (the
green line in Fig. 1(a)), has two different regions — one

stable in the x1 direction and the other unstable in the
x1 direction. The stability of the system with respect
to x1 on the symmetry line x1 = 0 is given by the sign
of the second derivative ∂2x1

f |x1=0: if it is positive the
system is stable, and if it is negative the system is unsta-
ble. Having two different regions of stability, means that
the stability changes as a function of x2. The simplest
setting for these two regions is having one point, which
we denote the stability point xst2 , separating between the
stable and unstable regions. The presented example ad-
heres to this simple setting, as shown in Fig. 1(a) — the
black line is located at x2 = xst2 and it separates between
the stable region (gray) and the unstable region (orange).
These conditions are summarized by

∂2x1
f(x1 = 0, x2;T )


< 0, for 0 < x2 < xst2
= 0, for x2 = xst2
> 0, for xst2 < x2 < x∗2.

(6)
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B. The Form of the Landau Free Energy

Let us demonstrate the above idea with a concrete con-
struction of f(x1, x2;T ). The Landau free energy has the
following form:

f(x1, x2;T ) = γ(x2, T ) + ψ(x2, T )x21 + x41. (7)

It is composed of x01, x21 and x41 terms, which is the sim-
plest form for a system with a second order phase tran-
sition for x1. The x2 dependence of the effective free
energy in Eq. (7) is chosen as follows.

First, the function γ(x2, T ) determines the minima
with respect to x2 in the hot phase T > Tc, where
xeq1 = 0. We set it as

γ(x2, T ) = 5(x2 − y(T ))2

y(T ) =

(
T

Tc

)2

e−(T/Tc)
2

, (8)

where Tc is the critical temperature of the model [37].
For a fixed T , the minimum of γ(x2, T ) is located at
x2 = y(T ), which is a non-monotonic function of T with
a single maximum at Tc, where y(Tc) = x∗2 = e−1 ≈ 0.37.

Next, we construct ψ(x2, T ) such that (i) It generates
the second order phase transition at T = Tc; (ii) It does
not alter the non-monotonic behavior of xeq2 (T ); (iii) At
low temperatures (below Tc) the stability of symmetry
line x1 = 0 changes as a function of x2 in the range of
the equilibrium values (0, x∗2). Namely, the stability point
xst2 satisfies 0 < xst2 < x∗2.

To have a phase transition in the x1 coordinate at Tc,
we require that

ψ
(
xeq2 (T ), T )

)
> 0, for T > Tc
= 0, for T = Tc
< 0, for T < Tc.

(9)

In addition, to make the equilibrium of T i > Tc stable in
the x1 direction for dynamics with bath temperature at
T f < Tc, we require that ψ(xeq2 (T i), T f ) > 0. Combining
this condition with the condition in Eq. (9) for T = T f ,
we find these two conditions

ψ
(
xeq2 (T i), T f

)
> 0

ψ
(
xeq2 (T f ), T f

)
< 0. (10)

The conditions in Eqs. (9, 10) are demonstrated graphi-
cally in Fig. 1(a, c).

A simple way to fulfil all the demands for ψ(x2, T ) is
by a parabola in x2 that changes as a function of tem-
perature:

ψ(x2, T ) = ax22 + b(T )x2 + c(T ). (11)

The temperature dependence of the parabola is captured
graphically by Fig. 2. For T > Tc, ψ(x2, T ) > 0 for
all values of x2. At T = Tc, it is positive at all values
of x2 except for x2 = x∗2, where ψ(x∗2, Tc) = 0. For

T < Tc, it is negative for some values of x2, including
xeq2 (T ), but positive for some x2 < x∗2. Note that the
roots of ψ(x2, T ), which exist only for T ≤ Tc, determine
the boundaries of the stability regions. For low enough
temperatures, the smaller root of ψ(x2, T ) is negative,
and so only the larger root is in the range of the model’s
parameters. Thus this single root is exactly the stability
point xst2 , see for example the green dot in Fig. 2. A
concrete choice that adheres to this behavior is given by

a = 80

b(T ) = −10ax∗2
T

Tc
(12)

c(T ) = 5x∗2

(
T

Tc
− 1

)
+ 5a(x∗2)2

(
T

Tc

)2

.

We note that the f constructed above is at most
quadratic in x2, and that the coefficients of x22 in both
γ and ψ are positive – therefore the free energy has a
minimum at all temperatures.

0.0 0.2 0.4 0.6 0.8

-1

0

1

2

FIG. 2. ψ(x2, T ), as defined in Eqs. (11, 12), is a parabola
that slides on the linear line 5(x2 − x∗2) (black) as a function
of temperature. The minimum of the parabola coincides with
the black line and is denoted by white dots. For T > Tc,
ψ is strictly positive; for T = Tc, ψ is non-positive only at
x2 = x∗2, where it zeros; for T < Tc, ψ is both positive and
negative. The contrast between these positive and negative
regions at T < Tc exactly accomplishes the wanted behavior
in Fig. 1(a), which is encapsulated by Eq. (6). The point x2
where ψ vanishes corresponds to the stability point xst2 (such
a point is denoted in green in the Fig. for T = 0.2) that
separates between the stable region and the unstable region.
It corresponds to the black line in Fig. 1(a-b).

C. Existence of the Mpemba Effect

The Landau free energy f(x1, x2;T = 0.1) given in
Eqs. (7, 8, 11, 12) is plotted in Fig. 1(a). By comply-
ing with the features explained above, it demonstrates
the Mpemba effect: the blue and red dots correspond to
~xeq(T i

cold) and ~xeq(T i
hot), respectively. In both cases, fol-

lowing the dynamic in Eq. (3), x2 decreases as a function
of time, and reaches the stability line (the black line in
Fig. 1(a)) at finite time. Crossing from the stable region
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to the unstable region, x1 is deflected from the x1 = 0
line. As the cold (blue) initial condition ~xeq(T i

cold) passes
by the hot (red) initial condition ~xeq(T i

hot), and they fol-
low the same dynamic, it takes longer time for the cold
initial condition to reach the phase transition line than
the hot initial condition. Thus the Mpemba effect exists.

Finally, let us analyze the range of temperatures for
which the Mpemba effect occurs. The phase transition
time is a function of both the final and initial tempera-
tures, namely tc(T

i, T f ). If for some value of T f , the
phase transition time has tc(T

i
hot) < tc(T

i
cold) (which

means that the hot system crosses to the ordered phase
faster), then we have a Mpemba effect. Recall that in
this analysis we require that T i > Tc and T f < Tc.

To understand the dependence of the phase transi-
tion time tc on the initial temperature T i and the bath
temperature T f , note that T i sets the initial value of
x02 ≡ x2(t = 0), and T f sets the stability line xst2 (re-
call Eq. (6)). As xeq2 (T i) is a decreasing function (for
T i > Tc), increasing T i means that the initial value x02
decreases and starts closer to xst2 . Thus we expect that
for high enough T i, the initial condition starts in the
unstable region, x02 < xst2 , and so the phase transition
happens instantaneously, namely tc = 0.

Next, consider the dependence of tc on the bath tem-
perature T f . As T f increases, the position of the stability
line xst2 increases as well. To see this, note that the sta-
bility line xst2 is given by the greater root of ψ(x2, T

f )
(Eq. (7)). Increasing T f increases the roots of ψ(x2, T

f ),
as can be seen in Fig. 2. Therefore, increasing T f means
that the range of initial temperatures which have non-
zero tc gets smaller. These two features are apparent
in Fig. 3, where tc is plotted as a function of T i and
T f . The Mpemba effect therefore exists for all triplets
T f < T i

cold < T i
hot such that the point (T f , T i

cold) is to
the left of the red line in Fig .3.

V. DISCUSSION

In this manuscript, we used the gradient of the free en-
ergy as the force that drives the macroscopic parameters
~x(t) in the thermal relaxation process, and identified the
point in time at which the stability of order parameter
changes as the “phase transition time”. With this identi-
fication we could define a Mpemba effect with respect to
a phase transition, and construct a Landau free energy
that demonstrates it. We stress that the Mpemba effect
defined here is not restricted to the specific dynamics we
considered (Eq. (3)). Indeed, as stability of the order pa-
rameter is generic in second order phases transitions, the
identification of the time in which the order parameter
crosses from a stable region to an unstable region can
be applied in other non-equilibrium relaxation models as
well. We demonstrate this in the Supp. Info., where we
consider the phase transition time for a model with a
microscopic dynamics whose thermodynamic limit is not
the gradient of the free energy.

FIG. 3. The phase transition time tc as a function of the ini-
tial temperature T i and the final temperature T f . Note that
the initial conditions correspond to the disordered phase so
T i > Tc, and the final temperatures correspond to the ordered
phase so T f < Tc. As for any final temperature T f / 0.8,
the phase transition time tc(T

i, T f ) is a decreasing function
of T i, the system exhibits the Mpemba effect. The red line
separates the temperatures space (T i, T f ) to two regions: on
the left the Mpemba effect exists, whereas on the right it does
not.

Of specific interest are non mean-field models, which
correspond to more realistic systems with spatial struc-
ture. In these models a spatially dependent field is
needed for a proper description. Analyzing the dynamic
in Fourier components, which are commonly coupled, it
might happen that the non-zero components correspond-
ing to spatial fluctuations of the field affect the zero
Fourier component, which determines the mean of the
order parameter field. If the stability of the zero Fourier
component changes due to the dynamics of other Fourier
components, a phase transition at a finite time, and con-
sequently – a Mpemba effect might exist even in a system
with a single macroscopic parameter as the ferromagnetic
Ising model [38]. In other words, the non-zero Fourier
components in statistical field theories can play the same
role as x2 plays in the simple example discussed in this
manuscript.

The phase transition time defined in Eq. (4) is not the
only possible definition. For example, an alternative def-
inition that can be used is the point in time at which the
probability distribution of the order parameter changes
from having a single maximum at x1 = 0 to having two
distinguishable maxima at non-zero value of the order
parameter. This phase transition time is expected to be
correlated, but delayed with respect to the phase transi-
tion time used in this manuscript. The main advantage in
such a definition is that it is experimentally and numer-
ically easier to observe in models where direct stability
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analysis cannot be done. However, in this case the exact
phase transition time depends on the noise characteris-
tics.

In contrast to the Mpemba effect in Markovian systems
[18, 30] or in granular gases [23, 39], the inverse Mpemba
effect – where a cold system heats faster than a hot one –
is less expected in the suggested framework. In the reg-
ular effect, the two hot systems are initiated at xeq1 = 0
and the phase transition happens at tc where x1(tc) = 0
becomes unstable. In the inverse effect, the two systems
are expected to be initiated at some xeq1 6= 0. Regardless
of the stability in the x1 direction, most models cannot
attain 〈x1(t)〉 = 0 at a finite time t, but only approach
zero asymptotically at t → ∞. Therefore it is not ob-
vious how to identify the exact phase transition time in
this case. The inverse Mpemba effect might nevertheless
exist in this framework, but in models that have a sec-
ond order phase transition between a disordered phase
at cold temperature and an ordered phase at high tem-
perature. An example for such a model is the mean-field
anti-ferromagnet at some small range of magnetic field
values [36].

The model presented in this manuscript is phenomeno-
logical, and it would be of great interest to find a con-
crete, microscopic model that demonstrates the same ef-

fect. However, the temperature dependence in the free
energy we constructed is quite involved. It cannot origi-
nate from a simple coarse-graining procedure that gives a
linear temperature dependence as e.g. in [36], but rather
from a more involved procedure, e.g. the Hubbard-
Stratonovich transformation [40], that often results in a
more complicated temperature dependent free energy.

Lastly, we note that our discussion here is limited to a
second order phase transition, whereas in various exam-
ples as water [2] or clathrate hydrates [11] the observed
Mpemba effect happens through a first order phase tran-
sition. The non-equilibrium dynamic through a first
order phase transition, e.g. “nucleation and growth”
[41, 42], is vastly different from the dynamic discussed
here, and is a main challenge for future studies.
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anta, A. Maiorano, E. Marinari, et al., The mpemba
effect in spin glasses is a persistent memory effect, Pro-
ceedings of the National Academy of Sciences 116, 15350
(2019).

[14] Z.-Y. Yang and J.-X. Hou, Non-markovian mpemba effect
in mean-field systems, Physical Review E 101, 052106
(2020).

[15] N. Vadakkayil and S. K. Das, Should a hotter param-
agnet transform quicker to a ferromagnet? monte carlo
simulation results for ising model, Physical Chemistry
Chemical Physics 23, 11186 (2021).

[16] A. Nava and M. Fabrizio, Lindblad dissipative dynamics
in the presence of phase coexistence, Physical Review B
100, 125102 (2019).

[17] G. Teza, R. Yaacoby, and O. Raz, Relaxation
shortcuts through boundary coupling, arXiv preprint
arXiv:2112.10187 (2021).

[18] Z. Lu and O. Raz, Nonequilibrium thermodynamics of
the Markovian Mpemba effect and its inverse, Proceed-
ings of the National Academy of Sciences of the United
States of America 10.1073/pnas.1701264114 (2017).

[19] A. Gal and O. Raz, Precooling Strategy Allows Ex-
ponentially Faster Heating, Physical Review Letters
10.1103/PhysRevLett.124.060602 (2020).

https://doi.org/10.1119/1.2186331
https://doi.org/10.1016/J.IJREFRIG.2016.09.006
https://doi.org/10.1016/J.IJREFRIG.2016.09.006
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.09.015
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.09.015
https://doi.org/10.1119/1.18059
https://doi.org/10.1119/1.18059
https://doi.org/10.1039/C4CP03669G
https://doi.org/10.1021/acs.cgd.8b01250
https://arxiv.org/abs/1011.3598v1
https://arxiv.org/abs/1011.3598
https://doi.org/10.1073/pnas.1701264114
https://doi.org/10.1103/PhysRevLett.124.060602


8

[20] I. Klich, O. Raz, O. Hirschberg, and M. Vucelja, Mpemba
Index and Anomalous Relaxation, Physical Review X
10.1103/PhysRevX.9.021060 (2019), arXiv:1711.05829.

[21] M. Walker and M. Vucelja, Anomalous thermal relax-
ation of Langevin particles in a piecewise constant po-
tential (2021), arXiv:2105.10656.

[22] D. M. Busiello, D. Gupta, and A. Maritan, Inducing and
optimizing markovian mpemba effect with stochastic re-
set, New Journal of Physics 23, 103012 (2021).

[23] A. Lasanta, F. Vega Reyes, A. Prados, and A. Santos,
When the Hotter Cools More Quickly: Mpemba Effect in
Granular Fluids, Physical Review Letters 10.1103/Phys-
RevLett.119.148001 (2017), arXiv:1611.04948.

[24] A. Biswas, V. Prasad, O. Raz, and R. Rajesh, Mpemba
effect in driven granular maxwell gases, Physical Review
E 102, 012906 (2020).

[25] S. Takada, H. Hayakawa, and A. Santos, Mpemba effect
in inertial suspensions, Physical Review E 103, 032901
(2021).
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Finite Time in a Mean Field Model

The phase transition time tc defined in Eq. (4) is quite
intuitive, but to the best of our knowledge, it is not com-
monly used. In this section we explore its nature, and
show that it behaves as one expects from a phase tran-
sition time. To this end, we first note that tc defined
in Eq. (4) is already an average quantity. To under-
stand the validity of the definition, we therefore define
the (stochastic) “empirical phase transition time” for a
given realization as the minimal t̃c that solves

∂2x1
f
(

(x1 = 0, x2(t));Tb

)
= 0 (A1)

The suggested definition in Eq. (4) is physically solid
only if the mean time, 〈t̃c〉, does not diverge and its vari-
ance decreases with the system size. However, these can-
not be checked at the level of a Landau theory, where
the noise is somewhat synthetically added, and the ther-
modynamic limit is already taken. Instead, it should be
considered at the microscopic level. As we demonstrate
in what follows, crossing the phase transition at a finite
time can be demonstrated for example in the Glauber dy-
namics of the mean field anti-ferromagnetic Ising model,
discussed e.g. in [36]. This example also serves us in
demonstrating that our definition for the phase transition
time works not only for the gradient of the free energy
dynamics (Eq. (3)), but also for other possible dynamics
that can arise from microscopic models.

1. Model Definition

To demonstrate the well behavior of the phase transi-
tion time and the applicability of our definition in non
free energy gradient decent dynamics, we consider the
mean field model of the Ising anti-ferromagnet under
Glauber dynamics. The equilibrium properties of the
model are presented in [36], and the Glauber dynamic
for this model is discussed in [20].

In mean field models of spin systems, every spin inter-
acts with all other spins in the system. As we consider
the anti-ferromagnet, we divide the system into two sub-
lattices of equal size where every spin in one sub-lattice
interacts with all other spins in the other sub-lattice, but
not with the spins on the same sub-lattice. In the mean
field picture there is no spatial structure, thus the state
of the system can be described by the number of up-spins
in the first sub-lattice N1,↑ and the number of up-spins
in the second sub-lattice N2,↑. For a system of N spins,
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each sub-lattice is composed of N/2 spins, and so the
normalized magnetization of each sub-lattice is given by

y1 =
N1,↑ −N1,↓

N/2
, y2 =

N2,↑ −N2,↓
N/2

, (A2)

where Ni,↑, Ni,↓ are the number of up-spins and down-
spins in sub-lattice i, respectively. In terms of y1, y2 the
mean field Hamiltonian is given by

H = −N (Jy1y2 + h(y1 + y2)) , (A3)

where J is the coupling constant and h is the magnetic
field. For anti-ferromagnetic interactions, the coupling
constant is negative, and we set J = −1 for simplicity.
From these magnetizations of the sub-lattices y1, y2, fol-
low the more informative parameters of staggered mag-
netization s and total magnetization m defined as

s =
y1 − y2

2
, m =

y1 + y2
2

. (A4)

As the order of the system is encapsulated by the stag-
gered magnetization only, using our notation of Sec.
III C, the order parameter is x1 = s, and the other macro-
scopic parameter is x2 = m. Indeed, for h < 1 the stag-
gered magnetization s satisfies Eq. (1), namely

seq(T )

{
= 0, disordered, T ≥ Tc
6= 0, ordered, T < Tc.

(A5)

The critical temperature Tc is a function of the magnetic
field h, and it exists for small enough values of h. In what
follows we assume that h is small enough for Tc to exist.

2. Glauber Dynamics of the Model

The Glauber dynamics for this system, allowing only
single spin flips, was derived in Ref. [20].

In the thermodynamic limit, the dynamical equations
for s,m are given by

ṡ =
1

4

[
tanh

(
h−m+ s

Tb

)
− tanh

(
h−m− s

Tb

)]
− s

2
(A6)

ṁ =
1

4

[
tanh

(
h−m− s

Tb

)
− tanh

(
h−m+ s

Tb

)]
− m

2
,

(A7)

where Tb is the bath temperature. This dynamic is
not the gradient flow of any potential, as can be easily
checked. Therefore, it provides a different type of non-
equilibrium relaxation dynamic than considered in the
main text (Eq. (3)). Nevertheless, an analogous stability
criterion to the one in Eq. (4) can be defined in this sys-
tem too. Indeed, the stability of s at s = 0 is determined
by the derivative of ṡ in the s direction: ∂sṡ|s=0,m < 0
corresponds to m values which are stable with respect to

s, whereas ∂sṡ|s=0,m > 0 corresponds to m values which
are unstable with respect to s. The explicit condition,
using Eq. (A6), is given by

∂ṡ

∂s

∣∣∣
s=0,m

=
1

2

 1

Tb cosh2
(

h−m
Tb

) − 1

{< 0, stable

> 0, unstable.

(A8)
This function is plotted in Fig. 4 for Tb = 0.2 and h = 0.5,
and it shows the two stability regions. To see how this
stability condition corresponds to a measurement of the
“phase transition time” tc we next consider the equilib-
rium line in the configuration space of the macroscopic
parameters s,m.

0.0 0.1 0.2 0.3 0.4
-0.5

0.0

0.5

1.0

1.5

stable unstable

FIG. 4. The stability of the flow on the symmetry line s = 0,
∂ṡ
∂s

∣∣∣
s=0,m

given in Eq. (A8) for h = 0.5, Tb = 0.2. The green

vertical line separates between the stable and the unstable
regions.

3. The Equilibrium Line

The equilibrium line of the model is obtained by find-
ing the fixed points of the dynamics in Eqs. (A6, A7), i.e.
by solving for ṡ = 0, ṁ = 0 (for an alternative method
see [36]). The equilibrium line and the dynamic prop-
erties of the model are a function of the magnetic field
h. For weak magnetic fields, |h| < |J |, these properties
are qualitatively the same, and therefore from now on
we set h = 0.5 for all the numerical calculations that are
presented.

The equilibrium line, plotted in Fig. 5(a), has the same
qualitative shape as the example given in Sec. IV. In par-
ticular the non-monotonicity of the equilibrium values of
the magnetization as a function of temperature, meq(T ),
which has a maximum at Tc is qualitatively the same.
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FIG. 5. (a) The equilibrium line of the anti-ferromagnet for h = 0.5. The equilibrium line corresponds to solving ṡ = 0, ṁ = 0
given in Eqs. (A6, A7). Temperatures range from T =∞ to T = 0 that correspond to red and blue, respectively. The arrows
indicate the flow of the macroscopic parameters for the bath temperature Tb = 0.2. (b) Inset of panel (a) showing the stability
of the flow ṡ, ṁ with respect to the symmetry line s = 0 at bath temperature Tb = 0.5. The red-blue line is the relevant part
of the equilibrium line which is shown fully in panel (a). The green line denotes the separation of the two stability regions: the
left part is the stable region for which ∂sṡ|s=0,m < 0, and the right part is the unstable region for which ∂sṡ|s=0,m > 0, see
Eq. (A8) and Fig. 4. The flow, denoted by the black arrows, shows the stability trends. All initial conditions on the left of the
green line have finite non-zero “phase transition time” tc.

4. Stability of the Non-Equilibrium State When
Quenched to a Cold Temperature

To show that the phase transition time tc is well de-
fined, we perform Monte Carlo simulations on finite sys-
tems with different sizes, from which we measure numer-
ically the statistics of t̃c.

The numerical measurements are performed as fol-
lows. For each system size N , we initiated each of
the 3 × 104 realizations with a random spin configura-
tion. This is equivalent to sampling the system from
the equilibrium associated with T i = ∞. Each realiza-
tion is then evolved by a Monte-Carlo algorithm that
implements the Glauber dynamics with Tb = 0.2. Note
that the model is stochastic by its discrete nature, so
no added noise is needed. The initial condition corre-

sponds to (seq(T = ∞),meq(T = ∞)) = (0, 0), which
is a stable point in the s coordinate. By Eq. (A8), for
h = 0.5, Tb = 0.2, we find that the value of m which
separates the stable and unstable regions is given by
mst(Tb = 0.2) ≈ 0.211 (see Fig. 4). For each realization,
we track the evolution of (s(t),m(t)) and we denote the
time in which the system crosses mst for the first time as
the “phase transition time” t̃c. To compare between dif-
ferent system sizes we count t̃c in units of “Monte-Carlo
Sweep time”, namely the number of spins N .

Figure 6 shows the calculated mean and variance of
t̃c. It can be seen that the mean is constant, whereas
the variance decreases with the system size. Thus we
conclude that the stochastic variable t̃c is a measurable
quantity which gives a finite non-zero time for the cross-
ing of the phase transition.
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FIG. 6. The mean (a) and the variance (b) of the “phase transition time” t̃c as a function of the system size N . The time t̃c is
measured in units of Monte-Carlo sweeps, i.e. in units of N . The mean is approximately constant, and the variance decreases
as N increases. Thus we conclude that t̃c is a well behaving quantity in the thermodynamic limit.
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