Heat Capacity

DSC

Heat is not a state function, so we define a state function related to heat, dS = dQ/T

-S UE) V
dH=VdP+TdS  d§=dO/T H A(F)
At constant P (dH = TdS = dQ)p p G T

We have C, = (dQ/dT) p= (dH/dT) p

In the DSC we measure the heat flow dQ/dt (Watts) at a constant heating rate dT/dt at constant pressure,
(dQ/dT)p=C,
So, the y-axis is C,, times dT/dt the latter of which is constant



A. amorphous

C, = (dH/dT) p = (dQ/dT) p = ((dQ/dt) (dT/dt))p

B. semicrystalline

(umop oxa) moj4 1eaH

Temperature



Derive the expression for C, — Cy From Chapter 1

C,- C, = o2VT/ky
o = (1/V) (dV/AT), H
= (1/V) (dV/dP);

P G
Cy = (dU/dT)y S = dO/T
From the Thermodynamic Square 0
dU = TdS - pdV and, Cy = (dQ/dT) vy = T (dS/dT)y - p (dV/dT)y = (dU/dT)y dU = TdS - PdV
Second term is 0, dV at constant V is 0 dH =TdS + VdP
(dS/dT)y = Cy/T dQ =TdS

Similarly

C, = (dH/dT),

From the Thermodynamic Square

dH = TdS + Vdp so C, = (dH/dT), =T (dS/dT), - V (dp/dT),
Second term is 0, dp at constant p is 0

(dS/dT),=C,/T

Write a differential expression for dS as a function of T and V

dS = (dS/dT)ydT + (dS/dV)1dV using expression for Cy, above and Maxwell for (dS/dV)t

dS = Cy/T dT + (dp/dT)ydV use chain rule: (dp/dT)y = -(dV/dT), (dP/dV)r= Va / (V)

Take the derivative for C,: C,/T = (dS/dT), = Cy/T (dT/dT), + (a/k1)(dV/dT), = Cy/T + (Va/x)
C,-Cy=a?VT/er



Molecular Basis for the Heat Capacity (Gasses)

Internal Energy of a gas

&1
U:Z:—ml-c? +D(r,ry,r3,....ry)
i=1

For an ideal gas, the potential is 0

3 el o 3kgT Monoatomic Gas: At

2 B 2 3 translational degrees of freedom each with 4 kT energy
3 3 _ U, _ i

Um =L ksT =2 RT Cym —[ po= )V =5

e

Linear molecule, CO,, can rotate in two axes, Cy,, = 5/2 R
Non-Linear, H,O, can rotate in three axes, Cy,, = 6/2 R
Plus, vibrational degrees of freedom



We calculate Cy, since all models assume constant volume
We measure C,, since calorimetric measurements are made at atmospheric pressure

From Cy for an ideal gas, you add R to obtain C,

ATV For an ideal gas PV =RT
Com—Cym=—" a is (dV/dT),/V=R/PV = I/T
KT K is -(dV/dP)/V = RT/P?V = 1/P

C,—Cy=(I/T?(TV)P=PV/T=R

For other materials you need to know the thermal expansion
coefficient and compressibility as a function of temperature.



Heat Capacity, multi-atomic gasses and vibrations

3 3 — (’\‘Ulll = -
Uy =L 5 kgT = - RT Cym [ oT j\/ R

e

Linear molecule, CO,, can rotate in two axes, Cy,, = 5/2 R
Non-Linear, H,O, can rotate in three axes, Cy,, = 6/2 R
Plus, vibrational degrees of freedom

Potential and Kinetic degrees of vibrational freedom add 2(R/2) for each type of vibration

Generally, 3n-6 vibrational modes

(For linear 3n-5 so for CO, 4 modes symmetric stretch, asymmetric stretch, two dimensions of bend)

0—0—0 0—0-O 6—9—6

Symmetric stretch Asymmetric stretch Bend Bend



PV =RT
For an ideal gas dV/dT =R/P
dV/dP = -RT/P?

-
E e e 1 ) a =1/V (dV/dT)=R/PV = I/T
L : Ky k =-1/V (dV/dP) = RT/VP2 = 1/P
o?TV/kr=VP/T=R



Table 8.1 Number of modes and heat capacity of gases in the classical limit.

Number of modes Classical

Translational ~ Rotational Vibrational Cy /R Cpm/R
A(g) 3 3/2 5/2
AB(g) 3 2 7/2 9/2
AB>(g) 3 3 3 6 7
non-linear
AB,(g) 3 2 4 13/2 15/2
linear
AB,_(g) 3 3 (3n —6) 3+Bn-6) 4+ @3n-06)
non-linear
AB,_,(g) 3 2 (3n -95) 712 + Bn—-6) 9/2 + (3n-6)

linear




T T v ' ' Monoatomic H(g) with only
translational degrees of
freedom is already fully
excited at low temperatures.

oy The vibrational frequencies
Ideal Gasses o (n) of H2(g) and H20(g) are
C, /R : :
2™ §/(mol K) = much higher, in the range of

100 THz, and the associated
energy levels are
significantly excited only at
temperatures above 1000 K.
At room temperature only a
few molecules will have
enough energy to excite the
H(g ) vibrational modes, and the

O heat capacity is much lower
than the classical value. The
1 ] 1 | 1 rotational frequencies are of
0 1000 2000 3000 4000 5000 6QQ(feorder 100 times smaller,

so they are fully excited
T /K above ~10 K.

Alg) 52 208
AB(g) 972 375

ABy(g) 7 58.3
non-line:

-1
Cpm/JK

3R =25 J/(mol K)

Figure 8.2 Molar heat capacity at constant pressure of H(g), H2(g) and H>O(g). The open
symbols at 5000 K represent the limiting classical heat capacity. 9



|deal Gasses

CV,m/R

A(g)
AB(g)

ABz(g)
non-linear

3/2
7/2
6

3 P
/ Vibration
-~

/ Rotation

Translation 1

0
10 25 50 75100 250 500 1000 2500 S000

Tcmpcralure. K

Figure 3.9 Heat capacity at constant volume of one molecufe of H, in

the gas phase. The vertical scale is in fundamental units; to oblain a value
in conventional units, multiply by k,. The contribution from the three
teanslational degrees of freedom is §; the contribution at high temperatures
from the two rotational degrees of freedom is 1; and the contribution

from the potential and kinctic encegy of the vibrational motion in the

high temperature limit is 1, The classical limits are attained when

v » refevant energy level separations”,

Monoatomic H(g) with only
translational degrees of
freedom is already fully
excited at low temperatures.
The vibrational frequencies
(n) of H2(g) and H20(g) are
much higher, in the range of
100 THz, and the associated
energy levels are
significantly excited only at
temperatures above 1000 K.
At room temperature only a
few molecules will have
enough energy to excite the
vibrational modes, and the
heat capacity is much lower
than the classical value. The
rotational frequencies are of
the order 100 times smaller,
so they are fully excited
above ~10 K.
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Heat Capacity of Solids

Dulong and Petit Law (Observation, heat capacity of solids

Cy/m=3R (25 J/(mol K)

In the classical statistical theory of Ludwig Boltzmann, the heat capacity of solids approaches a
maximum of 3R per mole of atoms because:

 full vibrational-mode degrees of freedom amount to 3 degrees of freedom per atom (x, y, z),

* each corresponding to a kinetic energy term and a potential energy term.

« By the equipartition theorem, the average of each term is Y,kgT per atom, or VLRT per mole.

« Multiplied by 3 degrees of freedom (x, y, z) and the two terms per degree of freedom (kinetic
and potential), this amounts to 3R per mole heat capacity.

11


https://en.wikipedia.org/wiki/Ludwig_Boltzmann
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Dulong and Petit Law (Observation for Solids)

30 1 | 1 I
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Molar heat capacity of most elements at 25 °C is in the range between 2.8 Rand 3.4 &)
R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.
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Fails for strongly bound light atoms

Dulong and Petit Law (Observation for solids)

- T v T — v T -
lodine(s) |,
50 - 3 R
< J
S SR
E 40 4 Bromine(g) Br, Iod}ne(g) 1 2
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The molar heat capacity plotted of most elements at 25°C plotted as a function of
atomic number. The value of bromine is for the gaseous state. For iodine, a value for the
gas and one for the solid is shown.

&3
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Atoms in a crystal (Dulong and Petit Law)
Works at high temperature

Force Balance
-K x = m d2x/dt?
Plug in a sine wave solution,
x = A sin(mt)

Three Harmonic oscillators, x, y, z
Boltzman 1877 Explains Spring (Potential Energy)

Each atom in a solid has 6 springs %U_/d);/zz K=2—Kx where x is 0 at the rest position Yields o = V(K/m)
Each spring with 2 kT energy K'_ i B x So, there is a fixed frequency
So, 6/2R =3R = C, metic Energy for a fixed spring constant

U =% mc?

and mass, since E = ho/2x,

c is the velocity of the atom so dx/dt there is a fixed or quantized

energy
), ), 9 ), &) 74 ‘. 2
U=2Lme +1Kx" =1mA”®” cos” ot +1 KA” sin” ot
. Potential and Kinetic Energies balance
X = A sin Wt W =27V = .|— inan oscillatory spring so U =0
m

Three degree of freedom oscillators per atom so U, = 3RT -SUV

dU = -pdV + TdS HA

(dU/dT)y = T(dS/dT)y = Cy -pGT

Cy m =3R=2494J K~ ! mol~! B



Einstein Model
Force Balance
-K x = m dx/dt?
Atoms in a crystal (Dulong and Petit Law) Plug in a sine wave solution,
. X = A sin(mt)
Works at high temperature Yields & = V(K/m)
So, there is a fixed frequency
for a fixed spring constant and
mass, since E = hw/2m, there is
a fixed or quantized energy

For something like a guitar string, we have quantized energy and frequency, it has one tone, but also overtones so, E = nE;
where n is the mode of vibration or quantized state, and n has integer values starting with 1. E; is the energy of the
primary mode, E = nhv or nh®w/27 for the vibration.

For quantum mechanics (very small particles like atoms) there is a problem with E = nhv or nhw/2n
1) At absolute 0 there is a ”zero-point energy” that keeps everything from collapsing for instance, we don’t observe
collapse as we approach absolute 0. Schrodinger equation finds this zero-point energy is 72 hv
2) If energy were 0 at absolute 0 then we would know both the position of an atom and its momentum = 0
This would disagree with the Heisenberg uncertainty principle. So, you need a “zero-point energy”
3) A “zero-point energy” can be measured experimentally
E = hv (1/2 + n) and n has integer values starting at 0 for the ground state energy.



Einstein Derivation of Dulong Petit

U=A+TS
dA = -SdT - pdV
(dA/dT)y = -S

U=A-T (dA/dT)y

A= NE;+ NkT }}; log

(dA/dT)y =Nk ¥; (log (h ) NkT (=)
U=NE,+NkT 3; log (=)
-NKT ¥; log ("5) = %, NkT
— NE, + gNKT

S UE) V

H A(F)
P G T
- - l oS
dlnx = dx/x logo = 5 Z log w,,

g is number of DOF or 3

16



Einstein Model

Consider the crystal is made up of free atoms confined into boxes as harmonic oscillators in 3D, x, y, z. All the atoms
have the same Einstein frequency, vg. There are then, 3N “independent” harmonic oscillators, where N is the number of
moles of atoms in the crystal. First consider one harmonic oscillator using k then multiply by 3N to get 3R.

The energy of one harmonic oscillator for quantum state (mode) “n” is €, = hvg (1/2 + n) wherenis 0, 1, 2, 3,...,0

The harmonic oscillators are at equilibrium at temperature T so the partition function (Zustandssumme, sum of states),

Z = Yn=oexp(—Pen) = Xy €XP (—ﬁhvE (n + ;—)) =e /23 e  wherex = fhvy and B = 1/kT

: : 1
Sum of geometric progress series Yp—q X" = —

1-x
e_x/z

l1—e~*

7 =

x = fhvg

Equipartition theorem: Energy is partitioned according to the probability of states

gnpexp(—nx) 1dz dinz e~ Phve
The average energy =<U>=) >  *+————= ———= - —— = hy, ————=
g gy Zn—O 7 7 dﬁ dﬁ E 1_ei—ﬁhve
e_x/
because Z = Yoo exp(—Pen) zZ= 1—2‘2"
2 hve 2 QE
au hv e kT 2] eT
Cy = (—) =k|—= ==k (—E) ———  For 3N, C, per mole =
ar/y KT . r/ (e )
<e RT —1) eT -1

e—hve/kT

hVE

Ve 1—e—hve/kT —

ehve/kT _1

Note that this explicitly includes the ground state energy, if you start with just an energy you get Z = 1/(1-e%)
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Heat capacity (J mol~! K-1)

Einstein Model

Phonons From Dove

YIIIIIIIIIIIIIIIIIIIIIII

L L l L L 1 l L L L l ' L L l L ' 1 l ' L L l L L L

llllllllllllllllllllllll

200 400 600 800

Temperature (K)

1000 1200

1400

Almost perfect fit, very high value for C,,
(see homework paper Caplin Griiner Dunlap)

O exp(Op /T)

— 2
dU
va{iF), A F)
Vv

where O, the Einstein temperature, is defined by

T ) [exp(®g/T)-1]°

kg

Fig. 9.2 Comparison of calculated (line) and
experimental (points) heat capacity of the
mineral andalusite, Al»S10s5.



Einstein Model
Works at low and high temperature (3R)
Error in dependence near 0K

Cy.m =3R=2494] K~ mol~!

..... i A TR T S T A
- 20
|
S
g "
T 3 B
O exp(Og /T) f ; é
T [exp(@E/T)—I]2 = 10r 5 Z
S =2
-c i A " "li J
0 10 20 30 40
v/ THz
O == .
0 200 400

T/K

Figure 8.3 Experimental heat capacity of Cu at constant pressure compared with Cy , cal-
culated by the Einstein model using O =244 K. The vibrational frequency used in the Eip-
stein model is shown in the insert.



Einstein Model
Works at low and high temperature (3R)

Error in dependence near 0K
Cy m =3R=2494J K ! mol!

T

7 2
CVJ]] :[d—UJ :BR[ (—)EJ exp(GE/T) . i
v T lexp(© /T) -11° 20

Single vibrational mode for all three DOF
Low T behavior exp(®g/T) doesn’t work

C, follows 13

The deviation is because Einstein ignored that
lattice vibrations are coupled to each other,
not independent o Lad / 13 .
“Collective Lattice Vibrations” 0 exp(©p/T) 200 400

/K

10

Cyp, /I K mol™
vibrational

density of states

0 10 20 30 40
v/ THz

Figure 8.3 Experimental heat capacity of Cu at constant pressure compared with Cy, ,, cal-
culated by the Einstein model using O =244 K. The vibrational frequency used in the Ein-

stein model is shown in the insert. 2



Debye Model
Works

20

Cy /I K mol™

0 &= :
0 200 400

T/K
Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the
Debye and Einstein Cy, . calculated by using O = 244 K and O = 314 K. The vibrational
density of states according to the two models is shown in the insert.
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Table 8.2. Debye temperature (Op in K) and electronic heat capacity coefficient (see Sec-

Electronic Contribution to Heat Capacity (Briefly)

Hence, only a very small fraction of electrons, those lying within ~kAT of the Fermi level, are able to

absorb the energy and contribute to the heat capacity.

The heat capacity per electron turns out to be

2 7

Einstein Temp.
Copper 236K
Aluminum 294K
Lead 72.8 K
Iron 355K

At room temperature this is a very small contribution to the overall heat capacity (on the order of a
few percent). However, at very low temperatures the electronic heat capacity dominates, since it is
linear in temperature while the lattice heat capacity is proportional to T°.

http://vallance.chem.ox.ac.uk/pdfs/EinsteinDebye.pdf

tion 8.4) (yin mJ K=! mol~!) of the elements.

Li [Be PA B 2 N O I Ne
344 1440 i Op 2050 75
18 |2 by 0

Na (Mg Al [Si |P S Cl  |Ar
158 400 428 645 92
14 |14 14

K Ca |Sc |[Ti |V Cr Mn |[Fe |Co [Ni [Cu [Zn |Ga |Ge |As |Se |Br |Kr
91 (230 (360 [420 [380 |630 410 |470 (445 (450 (315 (327 (320 |374 [282 |90 72
21 (77 36 92 |16 [180 |50 |48 |73 |7 6 6

Rb |Sr |Y Zr INb |[Mo [Tc |Ru |Rh |Pd [Ag [Cd |[In [Sn [Sb [Te |I Xe
56 (147 [280 [291 [275 |450 600 (480 [274 [225 |209 [108 |200 |211 |[I53 64
24 (37 30 88 |21 34 |49 100 |6 7 18 |18

Cs |[Ba |La |Hf |Ta |[W |Re [Os |[Ir Pt |Au |Hg [Tl |Pb [Bi [Po [At |[Rn
33 |110 |142 (252 (240 [400 (430 [S00 [420 [240 |165 |72 |79 |[105 (119

32 |27 26 |59 |12 |25 |24 [31 |66 [7 19 (15 [34

15 T
T 127 Cu
For T < 10K g
L 9t Coom/T=y+ /37'2 1
3 —E 6
C v - ﬁT + yT L)i 3t
ot Z— = 7 mJ K2 mol I.

0 100 200 300
2,2
T°/K

Griiner Constant

Figure 8.21 Heat capacity of Cu plotted as (‘I,vm-'I“l versus 72,



Crystal of lattice spacing a; Sound waves of wavelength A or k vector 27/A

Phonons Two size scales, a and A
If A > a you are within a Brillouin Zone
Wavevector k = 2mt/A

k-vectors exceeding the first Brillouin zone (red) do not carry
any more information than their counterparts (black) in the first
Brillouin zone.

Black are atoms subject to a high frequency transverse (wave) vibration (red)
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Phonons Two size scales, a and A
If A > a you are within a Brillouin Zone
Wavevector k = 21/A

k-vector is like the inverse-space vectors for the lattice (or the Miller indices)
It is seen to repeat in inverse space making an inverse lattice

A phonon with wavenumber £ is thus equivalent to an infinite \
family of phonons with wavenumbers k + 2rt/a, k £ 4ni/a, and w(k) | oPtical
so forth. acoustic
a) L] [ ] (] (]
° ° e —p o °
e e o e /e \o -n/a 0 k— n/a
Brillouin zone Brillouin zones, (a) in a square lattice, and (b) in a hexagonal lattice
b) those whose bands become zero at the center of the Brillouin

zone are called acoustic phonons, since they correspond to classical
sound in the limit of long wavelengths. The others are optical
phonons, since they can be excited by electromagnetic radiation.
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https://en.wikipedia.org/wiki/Optical_phonon

Phonons Two size scales, a and A
If A > a you are within a Brillouin Zone

Wavevector k = 21t/A
The partition function (Z) can be defined in terms of energy (E), E = —NkT InZ,

or in terms of the wavevector k=2n/A = 2nE/hc = -2nNkT InZ/hc
E and k are related by the dispersion relationship (dispersion of energy in k)

which differs for different systems
(longitudinal, transverse, acoustic, optical phonons)

dZm E - .
The density of states is defined by D(E) = % . % Z=Y exp(N(u—e)/ksT)
N=0

For a Longitudinal Phonon in a string of atoms the dispersion relation is: ,

Transverse is like an ocean wave or a guitar string, longitudinal is a compressive wave like sound

- ka
2

A
where w, = \,z’ kr /m is the oscillator frequency, m the mass of the

atoms, kp the inter-atomic force constant and a inter-atomic spacing.

sin x = x — x3/3! + x/5! - ...
For small x; sin x = x

E = 2hw

w(k)

-Tt/a

This relates modulus to frequency

m/a

25



Phonons

Dispersion Relationship is value of energy or frequency of

vibrations at a size-scale or wavelengths or what happens to E = 2hwy

vibrational energy in the crystal, i.e., modulus.

Density of States is how the total energy is distributed to different
frequencies of vibration. This is related to what happens at different
wavenumbers to different wavelength phonons.

]- dan E = ,
D(E) — V . % Z= \Z“ exp(N(pu —€)/kgT)

N is an integer related to the vibrational state k

(3)
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Frequency of a Harmonic Oscillator

Do a Force Balance

F = mx” = Kx where K is the spring constant, m is the mass

Then mx” — Kx = 0 is a second order differential equation or

x” — (K/m)x =0

If you know that the derivative of exponential is the exponential

Then you can guess one answer (this helps)

x = exp(xV(K/m) t); x’=+V(K/m) exp(=V(K/m) t); x” = K/m exp(xV(K/m) 1)
V(K/m) and t have to have inverse units so V(K/m) = ®

This is the native frequency of the oscillator

27



n(w.7)

o

0

o0 oC

Z = Z exp(N(pu —¢)/kpT) = Z[exl’((“ —¢)/kgT)|Y
N=0 N=0
1

1 —exp((n—¢)/knT)

Phonons

u is the ground state energy and € is the energy of a state

1 [o.¢]
s n
11—z _nzzox

which is valid for |z| < 1

Bose-Einstein statistics gives the probability of finding a phonon in a given state:

As temperature increases the 1
- number at frequency vincrease n (w o ) —
- As vincreases the number ] ' ﬁwk‘ s
: fixed T drops ] exp( kT ) st
'B

0

(S

~
b

kgTThay If n = exp((u—¢)/kT)/Z and A/(1-A) = 1/((1/A)-1) and 1/e(x) = e(-x)

Fig. 9.1 The Bose-Einstein distribution
n(w, T) asa function of kg T/ hw.
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Phonons
Atoms or ions of mass m;, m,

Separated by a distance a
With spring constant K

2 modes of vibration result for a crystal wi = I (

with two atoms in a primitive cell

+ is optical (atoms move against each
other, picture Na* CI- subject to an
oscillating electric field, i.e. IR light)
finite value at k£ = 0 reflects the
polarization of the material i.e. the
dielectric constant
- is acoustic (atoms move with each other) move at

speed of sound. 0 energy at £ = 0 or infinite A means
motion of the whole object

For three or more atoms in a primitive cell there are Three
acoustic modes: One longitudinal (sound) and Two
transverse (ocean)

Number of optical models is 3N-3

Fluids can’t support shear stress so, they only have
longitudinal (sound) acoustic modes

Dispersion relation (relating E to k) for phonons
(much math to get this expression)

w(k) optical
acoustic
-1t/a 0 kK—s n/a'

Plus optical

Minus Acoustic
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Phonons From Dove

Phonons have energy hw/2n
The energy at OK is not 0 it is %2 hw/2x

This is a consequence of energy quantization (lattice calculations are done at 0K)
(Uncertainty principle)

F =R l +n(w.T) n is the number of phonons at wavelength
) k. o and temperature T

p—

Bose-Einstein Relationship

Zq gexp(—BE(q))
2_qexp(—BE(q))

99 90

Average of some parameter ”’q

g) =

30



N | -

Dulong Petit result for the Bose-Einstein Relationship at high T

Phonons From Dove At high T
Bose-Einstein Relationship
I | - |
+nw,T) = -+ - exp(pe) +
2 exp(Pe) —1  2lexp(Pe) — 1]

1+ Be+ ---)+1
2[(1 + Be + B%€?/2 -+ ) — 1]
24 Be+ -
- Be(Q+Be+ --)

| kpT

_ B 9.10)

Pe hw

~v
~v

3 vibrations for each atom

E =3RT

-

I
E=hw |:; + n:| = kgT
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Debye Model (Wikipedia) Why the cutoff in g(v) at v;?

For a cube of size L vibrations are limited to certain modes like a string of length L

Modes of vibration, n N = 2L
T n
n=1 /\ hes hesn . ) .
E, = hv, = ~ T3 ¢, is the speed of sound in the solid

9
n=2 N 5 o hes \© , . . . For 3d
E2 = pic? = nZ +n2 4+ n? or

P, 1s the momentum of a phonon

/\/\ E=YE,N(E,) V=22 2 BN (E)

ny N

Amin = . For N atoms in the box

\:’W ' L

making the maximum mode number n (infinite for photons) YD

3N

3
Mpax — V4

(Transverse Wave)

g(v)

This is the highest energy vibration A
At high temperature all of the vibrations are excited

0 10 20 30 40 50
v/ THz



Debye Model (This is “borrowed” by Rouse for polymer dynamics)

Up-2 Uy iy Upy

O“”O“WOMMO“ (Longitudinal Wave)

K
a

Figure 8.4 One-dimensional chain of atoms with interatomic distance a and force
constant K.

Collective modes of vibration

If atom n vibrates and atoms n+1 and n-1 vibrate, the potential energy of n isn’t independent of the motion of
the neighboring atoms.

u 1s POSITION (x) and F is FORCE here  Before we had F = -Ku for uncoupled pairs

Force F=-Ku, —u +u, —u
E— ( n n+l n n-1 ) For coupled units

P u n (qU F 1s ma also Kx also

Force Balance m == —K(2u,, —Uy 41 —Il”_]) dU=F dx

2 A
Ot cu .



Propose a solution:

u, =ugycos(wt —qgna) wave vector g = 27/
Phase Atomic spacing is “a”
angle 6 ”n” is the atom index
Use in the equation of motion and solve for frequency
7,
P ~
- U oU .
Force m—7->"=— =F=-KQu, —u,,1—U,_1)
2 A
4K | . [ ga
o (l) = |—|SIln| — Angular frequency of vibrations as a function of wavevector, q

m 2 This is a dispersion relation relating energy to q or wavelength

34



Debye Dispersion Relation

4K | . [ ga

(U( (l) = |—|SINn| — Angular frequency of vibrations as a function of wavevector, q
m ) This is a dispersion relation relating energy to q or wavelength

2w,

w

ebye Dispersjon Relation
W :
: 5
Einstein Dispersion Relation
|
c ' -Tt/a 0 T/a
q))l q k
FIGURE 15.4 Dispersion curve w versus q for the Einstein solid. All 3N oscillators have the same Einstein frequency for wave vectors
in the accessible range 0 to q,,,.
https://ebrary.net/196904/mathematics/einstein_model specific_heat solids 35



Phonons Two size scales, a and A
If A > a you are within a Brillouin Zone

Wavevector k = 27t/A
The partition function (Z) can be defined in terms of E or in terms of the wavevector k=2n/A= 2nE/hc
E and k are related by the dispersion relationship which differs for different systems

(longitudinal, transverse, acoustic, optical phonons)

dZm E = ;
The density of states is defined by D(E) = % . % Z= Z exp(N(u —¢€)/ksT)
N=0

For a longitudinal Phonon in a string of atoms the dispersion relation is: .,

Transverse is like an ocean wave or a guitar string, longitudinal is a compressive wave like sound

. [ ka
sin 5

where wy = \,f kg /m is the oscillator frequency, m the mass of the

E = 2hw

w(k)

atoms, kr the inter-atomic force constant and a inter-atomic spacing.

-Tt/a



Debye Dispersion Relation

4K | . ( ga

w(g) = ,|— | SIn| — Angular frequency of vibrations as a function of wavevector, q
m ) This is a dispersion relation relating energy to q or wavelength
A
X o —————— Einstein
“’ ~ Dispersion
Debye . Relation
dispersion 4

Debye Dispersion Relation
For small qa, sin(qa/2) = qa/2
( to gp related to n,,,,)

relation

b
do 49

FIGURE 15.6 Linear dispersion relation to = vq used in the Debye model. The high-frequency cutoff has wave vector qp and frequency

0>¢.

https://ebrary.net/196904/mathematics/einstein_model specific heat solids -



Dispersion Curve

: ([e
CU( (I) = _|—1SIN l— Angular frequency of vibrations as a function of wavevector, q
m 2
1.2
" w=aKig —mla < g < mla
S 08} First Brillouin Zone of
g o the one-dimensional
g YR lattice
S
5 04+
Longer wavevectors
0.2
are smaller than the
0.0 lattice
—ntla 0 mla

<«— first Brillouin zone ——p
q

Figure 8.5 The dispersion curve for a one-dimensional monoatomic chain of atoms.
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Dispersion Curve

w(qg) = 18 sin| 44
m 2

Angular frequency of vibrations as a function of wavevector, q

1.0
Slope is related to = ost
the modulus 06|

w/(4K /m)

0.4

D27

0.0

w=da

V7

—

K
n

—1tla

0

tla

4— first Brillouin zone ——»p

q

—m/a < g < 7/a

First Brillouin Zone of
the one-dimensional
lattice

Longer wavevectors
are smaller than the
lattice

Figure 8.5 The dispersion curve for a one-dimensional monoatomic chain of atoms.
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Phonons

Two size scales, a and A
If A > a you are within a Brillouin Zone
Wavevector k = 2mt/A

k-vectors exceeding the first Brillouin zone (red) do not carry
any more information than their counterparts (black) in the first

Brillouin zone.
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https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Phonon

Dispersion Curve

4K | . [ qa

) (/) = _.[——|SINn| — Angular frequency of vibrations as a function of wavevector, q
m 2

For small wave vectors (long wavelength) sin(6) => 6

Acoustic or Ultrasonic range B Acoustic K
1.0 or w=da \l';llql
K wave vector g =27/ A 08| Ultrasonic
W=d,— IC] | Long wavelengths = Range
nm ; 0.6
=
5 04+
Group Velocity = do/dq = 02l
aV(K/m) .
Speed of sound in the solid 0.0
—rt/a 0 nla

<«—— first Brillouin zone ——p

Material is a continuum at these "

large distances
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Dispersion Curve

w(qg) = 18 sin| 44
m 2

For large wave vectors (short wavelengths)

Dispersion region

® 1isn’t proportional to q

For larger q velocity drops until it
stops at the Brillouin zone boundary
Standing Wave

Angular frequency of vibrations as a function of wavevector, q

1.0
0.8
0.6

0.4

(0/(4K/IH)1/2

02}

0.0

—

'K
w=a V}}—ﬂlql

—1tla

0

tla

<«—— first Brillouin zone ——p

q
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Longitudinal versus Transverse Waves

longitudinal
?':;:- 0 o? o o b
?o (® ] 03 o @ q
o Un-1 0 Un o o Un+1 \ ° Un+2
| : | | |
Q- Q ‘@ © @
transverse
Up o Upsl ° Un+2 o Un+3 ° o
| n+ & n+2 & n+: & Untd | ——» There are 2 transverse waves
‘l‘ s 6 S & s & ? q If material is 1sotropic or for
o _ 3 , 9 symmetric crystal planes
6 & & & 6 they are degenerate
, & & & | In plane and out of plane
9 9

Figure 8.6 Schematic representation of transverse and longitudinal collective vibrational
waves.
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(1)/(41(//11)“2

1.2

1.0

0.8t

0.6 +

04 ¢

021

0.0

[K
w=a.[—lql
m

Longitudinal and Transverse dispersion relationships for [100],[110],
and [111] for lead

Transverse degenerate for [100] and [111] (4- and 3-fold rotation axis)
Not for [110] (two-fold rotation axis)

—rt/a

<«— first Brillouin zone ——»

0

q

la
Pb [€:4,01 [ a4 ‘
.00 P i pon PPS
2 I IC ] ././ L .\. T A :: \.\. T ./r’/. I 1
v, LAY 7

o ,
£ ] ' \ )
S A~ N\
/ \'\\{ \|/ e
\ //
0 | 0 0.5

Figure 8.7 Experimental dispersion relations for acoustic modes for lead at 100 K [2].
Reproduced by permission of B. N. Brockhouse and the American Physical Society. 44



Figure 8.8 One-dimensional diatomic chain with lattice parameter 2a and force constant K.

|

|

Diatomic Chain Model

Uy p-1

n

Acoustic and Optical modes

Uy y

-y

)

Uy n

n

U 4l

L g du Al 4

n»

2 2
\/(’"1 —my )~ +4mym, cos” qga

my +my
mym, myn,
: 2 2
mytmy | (my —my)~ +4mym, cos” ga
mpny myms

2d

Minus Acoustic

Plus Optical

w(k)

N

acoustic

S

-1t/a

0 Kk m/a



2.1.3 Normal Modes of a One-Dimensional Chain with a Basis
We consider a one-dimensional Bravais lattice of lattice constant @ with two ions or atoms of
masses My and M, per unit cell. This is shown in Figure 2.6. The basic assumption is that each ion
interacts only with the nearest neighbors, which are at a distance a/2 from each other, and
M > M;. Thus, the lattice constant of the linear chain is a.

If K is the force constant, from Eq. (2.21) we obtain

yham o g—z (t(sa) = uz(sa))® + -’%2 (e (sa) = s + 1]al?, (2.32)

where wy(sa) is the displacement of the ion that oscillates about the site sa and wa(sa) is the displace-
ment of the ion that oscillates around sa + d. The equations of motion are

M, ity (sa) = -d"l:‘-:"';) = =K [2u)(sa) = uz(sa) = u([s = 1)a)),
(2.33)
M iiy(sa) = --‘m = =K [2uy(sa) = uy(sa) = u([s+ la)).
= duy(sa)

The solutions of Eq. (2.33) are of the type

Physics of Condensed Matter

“|(.‘(l, ') =€ \ ¢,’(‘l""“'” By Prasanta Misra

and
uxsa,1) = €™ (2.34)
Substituting Eq. (2.34) in Eq. (2.33), we obtain
-’ M\ €9 = K(€; - 2€ + €e™') ellasa-er)

and (2.35)
—* My €; 90-) = K(€ e - 2€; + €) eflPa-n)
I-—a

We cancel the ¢'9“") (erm from both sides
and solve the determinantal equation

My M,
FIGURE 2.6 K=-Me?  -K(1+e™®) 36
Diatomic linear chain of masses M, and M,. =K(1+€%) 2K - Myar

2.1 Lattice Dynamics 45

There are two roots of the solution of Eq. (2.36), which yields (Problem 2.4)

1=l e[l

(2.37)

M MM,

L, |)2_4 sin?(qal2)
M, M )

The two solutions of Eq. (2.37) are the two branches of the phonon dispersion relation. For

small g, the two roots of Eq. (2.37) are

_ K
@ =\ 3000, + Ma) ™
wr = (| 2KM+M2)
Wy = M]Mz g

and

(2.38)

(2.39)

We also note from Eq. (2.37) that if ga = #x (the Brillouin zone boundary), the expressions for

wy reduce to

G G | W O
o = (k[ o] ek [ k).

Thus, we obtain

2K

Wy = E (2.41)
and
o= :T'f 2.42)

At the Brillouin zone boundary, ¢ = +%.
We also note that because My >My w > w..
Another interesting point to note is that from Eq.
(2.34), uy and u; are periodic with ¢ = *2x/a.
Therefore, the dispersion relation repeats itself for
cach Brillowin zone. From the previous discus-
sions, we obtain the following results.

The vibrational frequency of a diatomic
linear chain of mass M;and M, is shown in
Figure 2.7.

The first branch, -, which tends to become
zero at ¢ = 0, is known as the acoustic mode.

(2.40)

4

/ Optical
+ w,

g

-rxla 0 xla
q—>

FIGURE 2.7

Optical and acoustic phonon branches of a diatomic
linear chain.




2K (my +my)
\J mym, M

acoustic branch

q
0 ] 2a

http://www.chembio.uoguelph.ca/educmat/chm729
/Phonons/optical.htm

15t Brillouin Zong
w

V2B (1! M1l m)

I =, '/T_—ﬁ\\\ B ! P
Optical branch Acoustical branch A X

m2a

m2a 0

Figure 8.9 Thedispersion curve for a one-dimensional diatomic chain of atoms.m, <m;.

2K
W, ~d 1 gl
mp +mo

2K(my +m»)

mym,

(1)0((] =0)=

transverse
acoustic mode

/"/‘\‘\v —

q
—>
q

transverse
optic mode

Figure 8.10 Transverse acoustic and optic modes of motion in a one-dimensional diatomic
chain at the same wavelength. .



Phonons

0 q b

Figure 8.9 Thedispersion curve for a one-dimensional diatomic chain of atoms.m, <m.

Short sizes (long ,
Dispersion relationship is how the energy or frequency of

wavelengths) are P : ‘ k
high energy vibrations related to the size scale or wavelengths or what happens E = 2hw, |sin na
(frequency) to vibrational energy in the crystal, i.e., modulus. 2
Probability of Density of states is how the total energy is distributed to different
energy going to frequencies of vibration. This is related to what happens at different
different wavenumbers to different wavelength phonons.
frequencies due 1 dZ.(E) x , ;
to the structure D(E)= = ——— 2= exp(N(u—e)/knT)

V dE N=0

L

N is an integer related to the vibrational state k

g(v)

0 10 20 30 40 50
v/ THz



Convert dispersion relation to DOS for a 1D wave in the continuum limit
2
g= wave number: g = 7”, A= amplitude, w= the frequency, v, = the velocity of sound

@ = Vq This is a kind of dispersion relation relating energy or
8 frequency to wave vector

Wave equation

u = Aei(qx—a)t) Density of states doesn’t depend on time so use: u = Ael(qx)
Choose periodic boundary condition u(x — 0) — u(x e L)
' - iqgL _
Apply boundary conditions to Y = Ae’(qx) Yields ef—:]
. ' 271' . That is qL=n2.7c .
This only occurs if: q= nf Since: elx —_ COS(X) + Sln(X)

n are the modes or the number of waves for a given frequency and the maximum number is how many atoms on a line.

4C
https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental Modules (Materials_Science)/Electronic Properties/Density of States w



Convert Dispersion relation to DOS For a 1D wave in the continuum limit

the number of modes in an interval dg in g-space equals:

2r dn = o idq
q=n— 2z 2r
L T
This number is the density of states (DOS) at a frequency ®
L . - I d Using s
g(w)dw = ——dq which we turn into: g(w) = (5:2)/(5 dispersion @ = Vi({
27 n q relation
For modes in positive and negative “q=space”
dw L 1 L1
— =V ®) = —off == b W) = ——
dq S g( ) ( 27[ ) VS g(a)) =<2 (2” v, ) g( ) T VS

A constant density of states like the Einstein Model

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental Modules (Materials_Science)/Electronic Properties/Density of States o0



E = 2hw |sin

E
2

Dispersion Relationship

(a)
B
6F _
LO TO
T 4} 1
=
> LA
ar LA 1
TA
0
0
(£,€0)

Figure 8.11 (a) Dispersion curve for CuCl(s) along [110] of the cubic unit cell. (b) Density
of vibrational modes [3]. Here L, T, A and O denote longitudinal, transverse, acoustic and

[S—

(b)

DoS / arbitrary units

1 dzZ,
D(E) = = -

(E)

|4 dE

Density of States

TA Cu(Cl

LA

JIN

LA TO

LO

0 2 Bl 6

v/ THz

optic. Reproduced by permission of B. Hennion and The Institute of Physics.

Number of vibrational modes

o0

3N g(vydv  where jg(v)dv =1
0
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(iiE)
cv=|—
aT )y
= Zh 'ii
= e
exp(hw/kpT)

_Zk (&)2
T LB\ keT ) [exp(hiw/ksT) — 112

Dispersion Relationship

(a)
| B
6F 4
LO TO
T 41 ]
=
-~ LA
2L -
LA
TA
0
0 |
(e,€,0)

3-d Crystal

(b)

DoS / arbitrary units

Transverse and longitudinal optical and acoustic modes exist for 3d crystals.

Density of States

TA Cu(Cl
LO
LA
C
LA TO
0 2 4 6
v/ THz

n atoms in unit cell

3N 4n vibrational modes

3N 4 acoustic modes (Unit cell vibrates as an entity)
3N 4(n-1) optical modes (deformation of unit cell)
At high T each mode has kgT (2 springs for each
Cartesian coordinate in two directions)

So, heat capacity is 3R

Number of vibrational modes

3N g(v)dv  where J.g(v)dv:l
0

Figure 8.11 (a) Dispersion curve for CuCl(s) along [110] of the cubic unit cell. (b) Density
of vibrational modes [3]. Here L, T, A and O denote longitudinal, transverse, acoustic and
optic. Reproduced by permission of B. Hennion and The Institute of Physics.
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Debye Model

At low temperature
Low energy, low frequency vibrations

are excited
These are acoustic mode vibrations
- 20 . . .
T Unit cell vibrates as an entity
= . .
= Long distances compared to a unit cell
|
N
> 10 ; ,
o (a) (b)
© LO
/ TA CuCl
T Lo TO 1
; E LO
0 L= ' . ]
0 200 400 =Rl _§
T/K = LA % LA
Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the ol | = LO
Debye and Einstein Cy, | calculated by using O = 244 K and O = 314 K. The vibrational A LA TO
density of states according to the two models is shown in the insert. TA j J'\ /\)
0 : '
) 2 4 6

0 1 (
(&,€0) v/ THz

Figure 8.11 (a) Dispersion curve for CuCl(s) along [110] of the cubic unit cell. (b) Density
of vibrational modes [3]. Here L, T, A and O denote longitudinal, transverse, acoustic and
optic. Reproduced by permission of B. Hennion and The Institute of Physics.
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Debye Model
Derivation

https://eng.libretexts.org/Bookshelves/Materials Science/Supplemental Modules (Materials Science)/Electronic Properties/Debve Model For Specific Heat
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Debye Model

/ / / E(n) N (E(n)) dn, dn, dn,

1 o 3 One Longitudinal T
N _ ne Longitudinal Two
< >BE eE/kT 1 N(E) eE/kT 1 Transverse

IN PN 3
E dn, dn, dn,
E(n)/kT _ 1

. " . Convert to Spherical
(ng,ny,n,) = (nsinfcos ¢, nsin fsin ¢, n cos ) Coordinates

https://en.wikipedia.org/wiki/Debye_model



U =

Debye Model

/2 /2 R 3 5
U %/ /0 / E(n) AT ln sin @ dn df d¢

0 0
N = l éﬂ'Rg R=.3 6.V There are 8 cubes worth of
ng & - particles in the sphere
It 2 he. '\
S
drofhen ', B-pd=(32) (nd+nf+nd
2 0 2L ehesn/2LkT _ q

T X Ceff = (1/3)C10ng (2/3)ctran%

https://en.wikipedia.org/wiki/Debye_model 56



Debye Model

3 2LET 3 hes R/2LET .’173 hcsn
U=—kT dx. T =
( he, ) /0 e — 1 &£ 2LET

2
TdithsR_th o) 6N hes /6 N
P otk 2tk 7 2% V7wV
U T \*® /T 43 T
Nk Q(TD)/O 1= 3(T)

— = 9(—) / dx
Nk Tp 0 (ex — 1)2

https://en.wikipedia.org/wiki/Debye_model
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Debye Model

U 74 ¥ /T :1:3 TD
e \Ty ) ), o= 3

In mathematics, the family of Debye functions is defined by Limiting values | edit]
o B T B lim D, (z) = 1. At high T (Dulong-Petit)
n(x) - z" Jo et —1 % z—0

The functions are named in honor of Peter Debye, who came across this function (with n = 3) in 1912 when he analytically computed

the heat capacity of what is now called the Debye model.

Derivative [edit]
The derivative obeys the relation .
So far I can’t do this
zD),(z) = n(B(z) — D,(z)),

where B(z) = x/(e® — 1) is the Bernoulli function.

Cy T \° /T glet
— =9 — dx

Nk TD 0 (611: — 1)2 N

https://en.wikipedia.org/wiki/Debye_model




Debye Model

3 2LET 3 hes R/2LET .’173 hcsn
U=—kT dx. T =
( he, ) /0 e — 1 &£ 2LET

2
TdithsR_th o) 6N hes /6 N
P otk 2tk 7 2% V7wV
U T \*® /T 43 T
Nk Q(TD)/O 1= 3(T)

— = 9(—) / dx
Nk Tp 0 (ex — 1)2

https://en.wikipedia.org/wiki/Debye_model
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Debye Model

Low-temperature limit

The temperature of a Debye solid is said to be low if T' < T, leading to

Cy T 3 poo ze® x=Tp/T
O () [,
Nk Tp 0 (er —1)°

This definite integral can be evaluated exactly:

Cv 1248 ¢ T
Nk 5 \Th /)

https://en.wikipedia.org/wiki/Debye_model 60



Debye Model

High-temperature limit

The temperature of a Debye solid is said to be high if ' > Tp. Using e — 1 = x if |:v| < 1 leads to

3 TD/'T 4
ST L / z T
NEk Ty 0 x2

where
Cy

Nk~3.

https://en.wikipedia.org/wiki/Debye_model



Debye Model

Debye Einstein

ee/kT

Gip__ of BN DI gleR Cy = 3Nk(-=)
Nk (E) /0 (e “ (o) (e —1)°

TE . s
— = 3 — = 0.805995977...
T, 1\ 6

https://en.wikipedia.org/wiki/Debye_model
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Low T

High T

Debye

Cy

Nk

Cy
Nk

~J

~ 3

Debye Model

Einstein

Exponential approach to T =0

1

o = 3Nk(/:T)2

1274 / T \°
5 Tp
CV

~ 3
Nk

TE . s
— = 3 — = 0.805995977...
T, \ 6

https://en.wikipedia.org/wiki/Debye_model

ef.-/kT

Dulong Petit

CV

~ 3
Nk

Cy

~ 3
Nk
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https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html

The high temperature limit kg7 >> hwp

The energy spectral density is,
3w? hw

272’ ( hew )

In the high temperature limit, the exponential factor can be expanded as exp(:“—q") ~ 14 % . The energy spectral density then becomes,
93] i}

u(w) =

u(w) = ol kpT
on2ed o
This can be integrated to yield the internal energy density,
u= w};) kpT = 3nk;T
on2cd B
The specific heat has the Dulong-Petit form,
¢, = 3nkp.

ay a menu
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https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html

Phonon density of states of the Debye model https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html

In the Debye model, the dispersion relation is linear, w = clkl, and the density of states is quadratic as it is in the long wavelength limit. v e
uw) = 5oy
" )

hw ) T
exp(fer) = 1+ 5

2
D(w) =

-1 -
m [S rad m 3].
weC
u(w) = %kl,r.

Here c is the speed of sound. This holds up to a maximum frequency called the Debye frequency wp. In three dimensions there are 3 degrees of freedom per atom so the
total number of phonon modes is 3n. u- 2:2; ko = 3nksT.

¢y = 3nkp.

3n = a/ D(w)duw.

Here n is the atomic density. There are no phonon modes with a frequency above the Debye frequency. The Debye freqency is w‘;’J = 6r’nc’.

The form below generates a table of where the first column is the angular frequency w in rad/s and the second column is the density of states D(w) in units of s/(rad m?).

6

D(w) Speed of sound: ¢ = [m/s]
[10]55/(1'3(1 m;)] ) Atomic density: n= [1/m3]

[ Replot D(w) ][ Tabulate D(w) ]

0 20 40 60 80 100
w [10'2 rad/s)


https://lampx.tugraz.at/~hadley/ss1/phonons/table/dosdebye.html

Debye Model

Cpy/JK ™ mol™

0 La '
0 200 400
T/K

Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the
Debye and Einstein Cy, | calculated by using O = 244 K and O = 314 K. The vibrational
density of states according to the two models is shown in the insert.

At low temperature

Low energy, low frequency vibrations
are excited

These are acoustic mode vibrations
Unit cell vibrates as an entity
Long distances compared to a unit cell

Distribution of frequencies, g(w),
above a cutoff frequency, op

o

3w

3
®p

g(w) = for wpzw

gw)=0 for w>wp
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Debye Model

. 20f
|
£
V.
—
~ 10f
&

() La .
0 200 400

T/K

Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the
Debye and Einstein Cy,  calculated by using O = 244 K and ©p = 314 K. The vibrational
density of states according to the two models is shown in the insert.

At low temperature

Low energy, low frequency vibrations
are excited

These are acoustic mode vibrations
Unit cell vibrates as an entity
Long distances compared to a unit cell

Quantized energy levels
€ = hw
Energy also equals kT

This defines the Debye temperature,
On

@D _ h(UD

:27{@
kg kg
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Einstein Model

— 7
dU O | exp(Op/T)
Cym :(_] :3R[ L J E 5
dT )y T ) [exp(®g/T)-1]
ha)E
Einstein temperature: O = P
B

Debye Model

At Low T this reduces to,

@D _ h(l)D =9 hVD
kg kg

Heat Capacity is given by,

3 6p/T
C =9R| —
V.m GD : (e“. B 1)2

T e X

1274 T
C\/ - Ll R
> Op

The T3 dependence is seen experimentally

x4 dx
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20

315K
244 K

Cpy/JK ' mol™

(e :
0 200 400

T/K

Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the
Debye and Einstein Cy, ,, calculated by using O = 244 K and O = 314 K. The vibrational
density of states according to the two models is shown in the insert.

Higher Characteristic T
represents stronger bonds
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Figure 8.13 Lattice heat capacity of three different polymorphs of carbon; Cgo [5],

graphite and diamond. .



Table 8.2. Debye temperature (Op in K) and electronic heat capacity coefficient (see Sec-
tion 8.4) (yin mJ K1 mol‘l) of the elements.

.........

Li [Be ‘A B [c IN o [F [|Ne

344 1440 : Qp : 2050 75

18 |2 )’ B Higher Characteristic T 0

o Mg ;epresents stronger Al Sj p S Cl R
onds

158 400 428 |645 92

14 |14 14

K Ca |Sc |[Ti |V Cr [Mn |[Fe |[Co [Ni |Cu [Zn |Ga |Ge |As |Se [Br |Kr

91 230 |360 420 (380 (630 410 |470 |445 [450 (315 |327 |320 |374 (282 |90 72

21 |77 36 92 |16 |[180 (50 (48 |73 |7 6 6

Rb |Sr |[Y |Zr [Nb Mo |[Tc [Ru |[Rh [Pd |Ag |Cd (In |Sn |[Sb |Te |[I Xe

56 |147 (280 (291 (275 |450 600 |480 |274 (225 (209 (108 |200 |211 [I153 64

24 |37 30 |88 |21 34 |49 (100 |6 F | 18 |18

Cs |Ba |La |Hf [Ta |W |Re |Os |[Ir Pt |Au |[Hg [Tl |Pb |[Bi |Po |At (Rn

33 |110 |142 (252 (240 (400 430 |500 [420 (240 (165 |72 |79 [105 (119

32 |27 26 [59 (12 |25 |24 (31 |66 |7 19 (IS |34 71




800

600

Op/ K
NN
S

200

Figure 8.14 Debye temperature of the alkali halides.
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Modulus and Heat Capacity

c =E¢
F/A =E Ad/d

F=KAd
K=F/Ad=EA/d

At large q, ® = V(4K/m)
This yields op from E

For Cu, Op = 344K

@D _ th =27 IIVD
kg kg

op = 32 THz

K = 13.4 N/m
op = 18 THz

(0/(4K/m)1/2

1.2

.

1.0

0.8
0.6
0.4

02}

0.0

w=da

—_—

|
S
\'m g

—t/a 0
<«—— first Brillouin zone ——p

q

tla
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Modulus and Heat Capacity

The Debye Temperature reflects the highest energy, lowest
wave vector vibrations so the linear part of the dispersion curve

hw hv
kg kg
Perg‘amon Acta mater. 49 (2001) 947-961 =

www elsevier.com/locate/actamat

CALCULATION OF DEBYE TEMPERATURE FOR
CRYSTALLINE STRUCTURES—A CASE STUDY ON Ti, Zr, AND
Hf

Q. CHENY and B. SUNDMAN
Department of Materials Science and Engineering, Royal Institute of Technology, S-10044 Stockholm,
Sweden

0,0) = 1.15k(0.43)£(487r5)”6\/% (15)

— i 1/6 @
= 05, (487" i

0,0) = O.86k”""k£13(487z5)”6 /roﬁB (19)

— ﬁ 1/6/@
= 0.70kB(48n5) o

400 1 | | | | | |

® Hcp e
3504 m Bcc 2 [

Zr -’Ti

- I I | 1 I 1 I
0 50 100 150 200 250 300 350 400
05%(0), K

Fig. 13. Comparison of the calculated and experimental high
temperature entropy—Debye temperature 6,(0) for hcp and bee

Ti, Zr, and Hf.
4



Table 8.3 Comparison of Debye temperatures derived from heat capacity data and from
elastic properties.

Ag Cu Al NaCl KBr LiF

Op(Elastic) 226.4 344 .4 428.2 321.9 182.8 834.1
Op(CV) 226.2 345.1 426 320 184 838
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How to obtain C, from calculated Cy?

- — Atlow T
KT CV=Cp

The harmonic oscillator model assumes constant volume
20 +

So, deviations for constant pressure are related to
“anharmonic” vibrations
10

Cp/] K™ mol™

Anharmonic vibrations contribute to the heat capacity
They also lead to a finite thermal expansion coefficient

5 0 10 20 30 40 50
,:' v/ THz
( b= 4

200 400
T/K

Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the
Debye and Einstein Cy, , calculated by using O = 244 K and ©p = 314 K. The vibrational
density of states according to the two models is shown in the insert.
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Approximate relationships for C, - Cy,

Nernst-Lindeman relationship Ifyou don't know the thermal expansion coefficient

@)
Vorr 3 b 5 o* VT
Cp,m —Cym = = C p.m Ir=AC p.m 1 Cpm—Cym= g
KTC ;) m !
If you know the thermal expansion coefficient,
o?VT
C -C 7 = ~oC 7 iy Cp.m =CVms=—
p,m V.,m 7G V.m K How does the
frequency of
0 e . vibration change
YG = op __oV Griineisen parameter, with specific 9
P(U/V) Vv KTCV m \
‘ : volume of a unit cell

Vv Bwvi

Yi = T Ay

w; OV 78



http://lampx.tugraz.at/~hadley/ss1/dbr/dos2cv.html

Density of states — Specific heat

The specific heat is the derivative of the internal energy with respect to the temperature.

()
c, = [ —
oT ) v N
This can be expressed in terms of an integral over the frequency w.
o o 1
Cy, = —/u(w)dw = —/ﬁwD(w)w—dw
orT orT efsT — 1

The Leibniz integral rule can be used to bring the differentiation inside the integral. If the photon density of states D(w) is temperature independent, the result is,

C, = /ﬁwD(w) 9 ,Ml dw
OT \ gipT — 1

Since only the Bose-Einstein factor depends on temperature, the differentiation can be performed analytically and the expression for the specific heat is,

c:/(n_w)2 D(w)eFsT o
v T kB-(h_w—l)z

eksT
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Spectroscopy measures vibrations, this can be used to calculate the
density of states, this can be integrated to obtain the heat capacity

IR: High Polarity
Motion of charged
atoms under
electromagnetic field

NaCl

Number of vibrational modes

3N g(v)dv  where J‘g(v)dv:l

(b)

Intensity

4-—degeneracy

(a)
N~
g 1007 \
=] _—
g N | \‘ .
é Y \\\
& | \ 10
= 10, N4
of \
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() 03 s & &
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A 02¢f modes
= Internal
=] .
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E‘; 0.1F ()pti‘c modes
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0.0 : - : )
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v/em™!

Figure 8.16 (a) IR and (b) Raman spectra for the mineral calcite, CaCO3. The estimated density
of vibrational states is given in (¢) while the deconvolution of the total heat capacity into contribu-
tions from the acoustic and internal optic modes as well as from the optic continuum is given in

(d).

(d)

Cp /I K mol™

100

N

Py

(=)
T

0 ;
0 200

0

105

10,

600 900 1200 1500

v/em!

T O
o
o ©

Experiments o
o

o Total calc.

Optic continuum
Internal optic

Acoustic

400
T/K

600 800 1000

Raman: High
Polarizability
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Spectroscopy measures vibrations, this can be used to calculate the
density of states, this can be integrated to obtain the heat capacity

Incident light

Sound waves

dﬁ materials

Review
100th Anniversary of Brillouin Scattering: Impact on
Materials Science

Materials 2022, 15, 3518.

Seiji Kojima

¥
Scattered light
T T T T
Spectrum of Fabry-Perot Interferometer
1500} e S RIS
3 Rayleigh peak
g ) : 7
£ 1000- { FSR = 30 GHz —}
= | : |
g Propylene glycol | : I
2 at 298K ] : i
2  500F : : LA I LApeak
3 4 : (Stokes) |3 (anti-Stokes)
—1 . . st
of e L s TPV ..

Brillouin scattering
spectrum

T

|

4

Frequency shift (GHz)

Figure 2. The spectrum of an angular dispersive Fabry-Perot interferometer of propylene glycol in a

liquid phase at 298 K with the free spectral range of 30 GHz.
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Spectroscopy measures vibrations, this can be used to calculate the
density of states, this can be integrated to obtain the heat capacity

Scattering intensity (arb. units)

10

Frequency shift (THz)
e —r—————rr] —

Pb(Sc,,Ta,,)0,

[ Brillouin scattering spectrum

10" E
10°
10

(
10

-4
288K

Raman scattering spectrum

oy

_ Optical phonon
ca 3

[ Acoustic phonon

E 3

E

E‘ -

3 —&— Raman scattering

. ~&— Brillouin scattering

E E
1 PO T PP o d | PR ST e | PO S e o |
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Frequency shift (cm™)

M materials

Review
100th Anniversary of Brillouin Scattering: Impact on
Materials Science

T Materials 2022, 15, 3518.

Figure 3. Broadband inelastic light scattering spectrum of a ferroelectric Pb(Sc, /,Ta; /)O3 crystal.
Brillouin and Raman scattering spectra were measured by a tandem multi-pass FPI and triple-grating
spectrometer, respectively [22].
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CV = (dU/dT)V

-SUV
H A

-pGT

From the Thermodynamic Square

dU = TdS - pdV so Cy = (dU/dT)y = T (dS/dT)y - p (dV/dT)y

Second term i1s 0 dV at constant V is 0
(dS/dT)V - CV /T

Similarly

C, = (dH/dT),

From the Thermodynamic Square

dH =TdS + Vdp so C, = (dH/dT), =T (dS/dT), - V (dp/dT),
Second term is 0 dp at constant p is 0

(dS/dT),=C,/T

Integrate C,/T dT or Integrate Cy/T dT to obtain S

Low Temperatures Solve Numerically
High Temperatures Series Expansion

4

2
s=3R%+m L|+2 O -1 (8 +
3 0, 40\ T 2240\ T

Entropy from Heat Capacity

>

('\'Anl ”‘) (~)| | C\P((_)I' ) )
T J [exp(O/T)-1]
Op/T
Sg =3R E —In[l — exp(-Og /T)]
[exp(Og/T)—1]
GE :h(J)E /kB
3Op/T X
Cy.m =9R{L) = xtdx
GD 0 ((’A\ _1)—
30p/T 23 g
Sp=3R| [ XL jp1 - exp(-0p/7))
e} § lexpo-1]
Op =hwp/kg
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Figure 8.17 Entropy of a monoatomic solid for different values of the Debye temperature,
Op.



Calorimetrically determine S at high temperature then find the Debye temperature that makes the calculation of S match

(a) 700

Large 6p means™
more stable

100

Figure 8.18 Entropy Debye temperature, Og, for (a) alkali earth dihalides [10] and
series transition metal carbides [11].

S =3R ﬂ+1n /4
3 2]
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On 1 L 1 L 1 1 L
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Basic

s-orbitals
2 valence
electrons
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Group Contribution Method for Entropy and Heat Capacity

Sum the component entropy and heat capacities

Estimation of thermodynamic data for metallurgical applications

P.J. Spencer
Lehrstuhl fiir Theoretische Hhttenkunde, RWTH Aachen, D-52056 Aachen, Germany

Received 10 October 1997; accepted 24 November 1997
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-SUV

H A Entropy correlates with molar volume
-pGT

Maxwell (dS/dV) = (dp/dT)y

Triple product (dp/dT)y = -(dV/dT)p (dP/dV)y ('j S 6@ jS
- = — or 1/3
oY Jr Ky L

0=0,/ -~

0, 1s characteristic T at V,

Dependence of entropy on volume for silicate and oxide minerals: (dS/d0); from
A review and a predictive model
3RO exp(e
Timoruy J. B. HoLLAND SE_3R[[°""(®E/T)_” e GE/T)]}
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England sen
sp=3R| T X - exp-0p/T)
o) ¢ [exp(0-1] reEn
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dG = -SdT +Vdp _SUV
For a transition AG =0 H A

And _pGT
dp/dT = AS/AV

AS and AV have the same sign

This isn’t true with a change in oxidation state or coordination number
Tetrahedral Si Octahedral Si 50% Octahedral Si
pyroxene > perovskite > garnet > ilmenite  entropy
Tetrahedral Si 50%  Octahedral Si Octahedral Si
pyroxene < garnet < ilmenite < perovskite Density = mass/volume

All the Si atoms are tetrahedrally coordinated in pyroxene,
while 50% are tetrahedrally coordinated and 50% octahedrally
coordinated in garnet. In the ilmenite and perovskite
modifications all Si atoms are octahedrally coordinated.
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Electronic Heat Capacity

Electrons that escape from the valence band to the conduction band have three degrees of freedom so contribute (3/2)R to
the heat capacity (Drude Model of conduction)

For monovalent Cu we expect Dulong Petit 3R plus 3/2 R (but we see only 3R so where is the 3/2 R?)

For Cu, (3 + 3/2)R this isn’t seen due to quantization of the electron energy level

Fermi Level = Electron energy level that at equilibrium is 50% occupied

Electrons above this energy are free electrons on average

kT

density of electronic states

&y
energy

Figure 8.19 Energy distribution for a free electron gas at 0 K (shaded) and an elevated tem-
perature (dashed line), 7.



Free
electron gas
at0 K
(shaded)

Excited at T
(dashed

line)

Ce/R

0.5

0.0

0.0

Figure 8.20 Heat capacity of a free electron gas. The population of the electronic states at
different temperatures is shown in the insert. T is typically of the order of 10° K.

density of electronic states

kT

Heat from OK to T

&

energy

fl®

1.0

08

0.6

0.4

0271

0.0

N; is the number of electrons

AU = N] k[gT excited by kT

These occupy electronic states in
a band of kT about the Fermi level

Nl =n(€ F )k BT n(eg) is the number of

electrons at the Fermi level

AU =n(ep)k,T >

_OAU
oT

CE :'}/T

Cx =2n(ep)k;T

v is the electronic heat capacity coefficient

v is 0 for an insulator and has a value for a metal
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Table 8.2. Debye temperature (Op in K) and electronic heat capacity coefficient (see Sec-
tion 8.4) (yin mJ K-1 mol‘l) of the elements.

Li [Be ‘A B [c N o [F |Ne
344 1440 : Op ! 2050 75
18 |2 LY 0

Na [Mg . = Al |S1 [P S Cl |Ar
158 (400 Cg =7T CVm:gR[LJ T 428|645 92
14 |14 | D 14

K |Ca |Sc [T1 |V Cr [Mn |Fe |[Co |Ni [Cu |Zn |Ga |Ge |As |[Se |Br [Kr
91 |230 |360 420 (380 (630 (410 |470 |445 [450 (315 (327 (320 |374 |282 (90 72
21 |77 36 192 |16 |180 (SO (48 |73 |7 6 6

Rb |Sr |[Y |Zr [Nb Mo |[Tc¢ [Ru |[Rh [Pd |Ag |Cd (In |Sn [Sb |Te |[I Xe
56 |147 [280 [291 (275 |450 600 |480 |274 (225 (209 (108 |200 |211 |I53 64
24 |37 30 |88 |21 34 |49 [100 |6 7 18 |18

Cs [Ba |La Hf |Ta |[W |[Re (Os |Ir |Pt |Au |[Hg [T1 |Pb |Bi |Po |At [Rn
33 |110 [142 [252 (240 (400 430 |500 |420 [240 (165 (72 |79 |105 |119

32 |27 26 |59 |12 25 24 (31 |66 |7 19 |[I5 (34




For T < 10K

Cy =pT> +yT

15
- 12 T
°
g
L 9 Co.m/T=y+ ﬂTz'
2
T 6 .
&~
E
9
© 3 i
Y=T7ml K2 mol !
() L 1
0 100 200 300

T2/ K

Figure 8.21 Heat capacity of Cu plotted as C,,,m-T‘l versus 72.
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—%8 [ o ‘ Add an
8| Adda.-* electron ffom
» | hole Ag raises
g4 from Rh ~. Fermi levegl
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| o) " |
ob—— e
Rh Xpg Pd XAg Ag

Figure 8.22 Variation of the electronic heat capacity coefficient with composition for the
alloys Rh—Pd and Pd—Ag [17]. Solid and dotted lines represent the electronic DoS for the 5s

and 4d bands, respectively.

A striking example is the electronic heat capacity coefficients
observed for Rh—Pd—Ag alloys given in Figure 8.22 [17]. In the
rigid band approach, the addition of Ag to Pd gives an extra
electron per atom of silver and these electrons fill the band to a
higher energy level. Correspondingly, alloying with Rh gives an
electron hole per Rh atom and the Fermi level is moved to a
lower energy. The variation of the electronic heat capacity
coefficient with composition of the alloy maps approximately
the shape of such an electron band.

Cg

OAU

:21'1(8F)kZBT

Table 8.2. Debye temperature (Op in K) and electronic heat capacity coefficient (see Sec-
tion 8.4) (yin mJ K~! mol=1) of the elements.

Li |Be PA B € N [0 [ Ne
344 |1440 {1 Op 2050 75
18 |2 % 0

Na |Mg Al |Si |P S Cl |Ar
158 (400 428 1645 92
14 |14 14

K |Ca |[Sc [Ti |V Cr Mn |[Fe [Co |Ni |Cu [Zn |Ga [Ge |As [Se |Br |Kr
01 |230 |360 |420 [380 |630 [410 [470 (445 (450 (315 (327 (320 |374 |282 |90 72
21 |77 36 |92 |16 |180 |50 |48 [73 |7 6 6

Rb (Sr |Y [Zr Nb |[Mo [Tc |Ru |[Rh |Pd |Ag [Cd |In [Sn |Sb ([Te |I Xe
56 147 (280 [291 [275 [450 600 (480 [274 [225 [209 (108 (200 (211 (153 64
24 |37 30 88 |21 34 [49 [100 |6 7 18 |18

Cs |[Ba |[La [Hf [Ta (W |[Re [Os |[Ir Pt |Au |Hg |TI |[Pb |Bi |[Po |At |[Rn
33 110 |142 |252 |240 |400 430 |500 420 |240 |165 |72 |19 105 |119

32 |27 26 |59 |12 |25 24 |31 |66 |7 19 (15 [34
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Slide 93 for density of states
Magnetic Heat Capacity /(,,w>z D(w)es™
Cp = —
Td G

(= —1)

dw

Magnetic excitation
Magnon
Spin waves

V(q) Zmagn(V)

Spin waves are propagating disturbances in the

@ @ @ ordering of magnetic materials.
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Heat Capacity for _ B B
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Heat Capacity for Systems that Display a Transition

0.5
Rate of entropy change with
T, C, = T(dS/dT)y,
/e -increases as kT approaches
0.3 1 the transition temperature.
-At high temperatures all
0.2 states are active so the
/ Cy change in entropy is small.
5§ g : This results in a peak in C
\ and C \%
\ p
0
0 I 2
7 { e
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From Kittel and Kroemer Thermal Physics Chapter 2

For a system with quantized energy and two states ¢, and ¢,, the ratio of the
probabilities of the two states is given by the Boltzmann potentials, (t is the
temperature kgT)

}?(r,) exp(—¢,/7)
I’(r,) cxp(Hc.,/r)

If state ¢, is the ground state, &, = 0, and the sum of exponentials is called the
partition function Z, and the sum of probabilities equals 1 then,

xp—¢ exp{—¢g/t — (A
Z = exp(-goft) + 1 U={s) = Ef—p(_—“—*) = g --—p(-—~l~ Cy = (aU/0t)y,
Z I + exp(—¢g/r)
Z normalizes the probability for a state “s 5 ( " )z exple/kyT)
it | R SR b
P(s,) = exp(-eJ/t)/Z = [exple/k,T) + 1]7

o~ &i/T
The average energy for the system is U = (X eie )/Z _ g2 (a'!‘liLTZ)
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0.5

0.4

0.3

0.2

0.1

From Kittel and Kroemer Thermal Physics Chapter 2

1/¢-————'-

T N b L

- i, @

z L+ exp(—e¢/ft)

2 /)
Cy = ku( = ) exp(e/kyT)

keT) [explesk,T) + 1]F
First term Second term
decays with increases with
(e/kT)? ~ exp(-¢/kT)
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Metal-Insulator Transition

First order transition at Ty between an insulator y = 0 and a metal y = y et

A quantum transition, critical quantum behavior
Ains- -m‘ctLS m — }/m'clTIrs

Transition can occur on doping of an oxide like Fe,O3
Temperature or Pressure Changes

(dS/dT), = C,/T



Magnetic Order-Disorder Transition

At the Curie temperature material goes from a ferromagnet to a paramagnet and loses magnetic order

This impacts the entropy and heat capacity

Maximum total order-disorder entropy can be calculated, AS

Ny, unpaired electrons

total spin quantum number.”” = X le

(2. + 1) quantized orientations

kg In(2.7 + 1) per particle
AS =RIn(2.7 +1)

(dS/dT), = C,/T

- total Cp

100
un

-1 -1
Cpm/JK " mol

50 i

Cp, m(magnetic)

0 1 L 1 1
200 400 600 800 1000

T/K

Figure 8.23 Heat capacity of FepO3 [18]. The heat capacity is deconvoluted to show the
relative magnitude of the main contributions. Cy4j] = Cp m — Cym = (XzTV/K‘T.
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Co;0, Transitions

Cathode in Li* batteries or blue pigment for pottery

@ Oxygen
® B (octahedral)
@ A (tetrahedral)

The spinel structure is formulated MM',X4, where M and M' are tetrahedrally and octahedrally coordinated cations, respectively, and X is an anion (typically O

or F). The structure is named after the mineral MgAl,0,4, and oxide spinels have the general formula AB,0..

1vc



Co;0, Transitions

The normal spinel contains Co2+ at tetrahedral sites and low-
spin Co3+ at octahedral sites. The heat capacity effect observed
at 7 900K is in part a low- to high-spin transition of the Co3+
ions and in part a partial transition from normal toward random
distribution of Co3+ and Co2+ on the tetrahedral and octahedral
sites of the spinel structure. The insert to the figure shows the
magnetic order—disorder transition of Co;0,4 at around 30 K.

600 30 .
" 20
°
g 400 [ 10 -1
IM 0
oy, "
\E 0 25 50 75 100 Y
= 200
_ @)
(dS/dT),=C,/T C0:0,
() 1 1 " 1 1
0 300 600 900 1200
T/K

Figure 8.24 Heat capacity of Co304 [23-25]. The insert shows the magnetic order—dis-

order transition at around 30 K [24] in detail. 103



Perfect Crystal

Perfect Crystal

Schottky Defect

Frenkel Defect

Schottky Defect

Frenkel Defect

Schottky defect occurs in those ionic crystals
where difference in size between cation and anion
is small.

Frenkel defect usually occurs in those ionic
crystals where size of anion is quite large as
compared to that of the cation.

In Schottky defect, both cation and anion |leave the
solid crystal.

In Frenkel defect, only the smaller ion (cation)
leaves its original lattice site; whereas, the anion
remains in original lattice sites.

The atoms permanently leave the crystal.

Here, atoms leave the original lattice site and
occupy interstitial position. So atoms reside within
the solid crystal.

One Schottky defect leads to the formation of two
vacancies.

One Frenkel defect creates one vacancy and one
self-interstitial defect.

Two atoms reduce from the crystal for each
Schottky defect.

The number of atoms present in the crystal before
and after Frenkel defect remains same.

Due to vacancy formation, Schottky defect reduces
density of the solid.

Density of the solid crystal before and after Frenkel
defect remains same as no atom leaves the solid.

Common materials where Schottky defect can be
found are:

¢ Sodium Chloride (NaCl)
¢ Potassium Chloride (KCI)
e Potassium Bromide (KBr)
o Silver Bromide (AgBr)

e Cerium Dioxide (Ce0,)

e Thorium Dioxide (ThO,)

Common materials where Frenkel defect can be
found are:

e Zinc Sulfide (ZnS)
* Silver Chloride (AgCl)
* Silver Bromide (AgBr)
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(dS/dT), = C,/T

0090000
00 °0
(N N @
® 00
00 00
Schottky Defect
10 Two levels with energy spacing e/kg
= T > ¢/kg both levels occupied equally
T | T T< ¢/kg only lower level occupied
c x B ] = =
E % Boltzmann statistics yields
¥ 8} X 5
= £ exp(e/kpT)
z G =R(———k ] (5_9_] p(e/kp .
2 4 BT ) \ 81 )| {(1+(go/g) exp(e/kgT)}
CJI:
0 . ; a go and g are the degeneracies of the ground level and the excited level
0 100 200 300

T/K

Figure 8.25 The Schottky-type heat capacity of Nd>S3 [28]. The insert shows the total heat
capacity of ErFeO3 [29].
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Schottky Defects

Endothermic formation enthalpy
Entropy associated with disorder of defect location

Cvm = %[A \'acHﬁ] CXP( ﬂ;;s—'lﬂ cxp( —ﬁ\_dim_J

RT~ kL
Cop = (L]"[g_ol exp(e/kgT) : AG =AH - TAS
kgT 81 )| {1+(go/gy)exp(e/kgT )}

(dS/dT)V = CV /T
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Fast Ion Conductors (solid oxide fuel cells high T)

Solid electrolytes for batteries and fuel cells

Agl, I lattice remains intact, Ag+ conductor becomes a liquid

Also, Cu,S, Ag,S. NaS battery

Heat Capacity drops with temperature

2 ofkea T
5 1:,,( . ) EXpieZal)

k,T) Torple/kyT) + 117
First term Second term
decays with increases with
(e/kT)? ~ exp(-¢/kT)



Liquids and C, = (dH/dT) p = (dQ/dT) p = ((dQ/dt) (dT/dt))p
Glasses

A. amorphous

B. semicrystalline

Heat Flow (exo down)

Temperature 108



Liquids and Glasses

Broad minimum in heat

(a) ‘ ' ' (b) ' ‘ . - capacity
40t 90t Se Tius c
| fiquid Loss of short-range order with
B v rising T leads to drop in heat
——g 351 E 60} lgluq[:ﬁ(lit e | capacity
= ; T_’ Initially, loss of vibrational
} 30+ & o ey degrees of freedom associated
2 A 1 with short range order led to
N \ % decrease in C,
25 solid = ] . .
= . : . T Later, S increases with T
200 400 600 800 1000 0 200 400T / l((;()o 800 1000

T(dS/dT), = C,

Figure 5.1 (a) Heat capacity of crystalline, liquid and supercooled liquid Se as a function
of temperature [ 1-3]. (b) Entropy of crystalline, liquid and supercooled liquid Se as a func-
tion of temperature.
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Liquids and Glasses

Broad minimum in heat

(a) ‘ ' ' (b) - ' T - capacity
40t 90t Se Tius -
| fiquid Loss of short-range order with
B v rising T leads to drop in heat
- 5 supercooled :
5 35} 2 60l liquid | capacity
<+ 1 L
. o . o
= = K Initially, loss of vibrational
} 30+ & o ey degrees of freedom associated
s 0 " 1 with short range order led to
T, % decrease in Gy
‘)g 2 us 4
g solid . .
; ; ‘ " ‘Kauzmann Paradox Later, S increases with T
200 400 600 800 1000 0 200 400 600 800 1000

T/K

T(dS/dT), = C,
Figure 5.1 (a) Heat capacity of crystalline, liquid and supercooled liquid Se as a function
of temperature [ 1-3]. (b) Entropy of crystalline, liquid and supercooled liquid Se as a func-
tion of temperature.
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Anomalous behavior of glasses near absolute 0

3 T
s Se (quenched glass)
'
——E v Se (annealed glass) Debye Cy ~ T3 near 0 K
'7= 2 i =
< Behavior is due to
; anharmonic vibrations
o (Relaxation phenomena)
1} -
B,0; (glass)
B->0; (s)
0 — » — —_—
0 50 100

T/K
Figure 8.26 Heat capacity of glassy and crystalline BoO3 [42-44] and glassy Se [41]
plotted as (,'/,',,,-7“3 versus 7.
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Pseudo-second order transition behavior of glasses

12() ¥ T T T
GeSe>
: . Relaxation phenomena
T ZnCl, titanosilicate o
= 1o > \lummosnhculg In glasses
=
T e —
f borosilicate
~
b‘:; 80 :
60 . 3 . .
300 600 900 1200 1500

T/K
Figure 8.27 Heat capacity of some glass-forming liquids close to their glass transition tem-
peratures: ZnCly [45], GeSej [46], and a selected titanosilicate [47], aluminosilicate [48]
and borosilicate [49] system.
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Pseudo-second order transition behavior of glasses

18() 1 T L) 1 T
2.5 K min™’
q ’ e |
'-;- 150 f 0K min = 4 Relaxation phenomena
| In glasses
T
-
T 120
b\
e 40 K min
(X) - B
700 750 800 850 900

T'/K

Figure 8.28 Heat capacity of glassy B»>O3 at different heating rates [50].
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Pseudo-second order transition behavior of glasses

55

N

—

-
L]

=
N

-

40 +

S / arbitrary units

W
N
1

glasses cooled

-
-
”
J -
‘il\l ’ -
LSS
’ ’ 2 s
Y YA .
s L .
’ ’
-
2 .
slow -

- P i
at different rates* . *
- - ’
- -
3 g - . E
. slow heating

L] 1

- -
-
-
> -
G supercooled hiquid
-
-
- P n
- -,

of fast cooled glass

A " 1 "

30

T / arbitrary units

Relaxation phenomena
In glasses

Figure 8.29 Entropy of a supercooled liquid and glasses formed by fast and slow cooling of
this liquid (the different dashed lines). The short dashed line represents slow heating of a

glass first prepared by fast cooling.
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Thermodynamic and Kinetic Fragility

Fragile versus strong glass

13

logm

0 T /T

( dlog,, n )
m:i=| ———
B(Tg/T) T-Tq

1

Kinetics: Deviation from Arrhenius behavior

N = 1o exp(-E4x/kgT)

Scaled Exponential

N = Mo exXp(-E4x/kgT)™

Odlnn

B In10

(

a(T,/T)

) T=Tg

T

—0lnn

- In10

(

or

) T=Tg
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Figure 1: Use of the Kauzmann plot to define thermodynamic fragility for glass-

forming liquids.
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Figure 1: Use of the Kauzmann plot to define thermodynamic fragility for glass-

forming liquids.
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Fig. 13: Correlation of glass and liquid fragilities for an ensemble of glass-formers.
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Figure 2: Correlation between fragility metrics AT/ Tgand Fy)».
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Heat Capacity of Polymers

Amorphous structure but with regular order along the chain
1-d vibrational structure

Einstein method works well above 100K

5 5 E is the heat capacity contribution
E(6/7) = [(6/T)%exp(6/T)] / [exp(6/T) - 1] for each vibration

Ce= Nkz ne E(O/T) Naoms = Number of atoms in a mer unit
3 for CHZ
Ng = 3N, - N N = number of skeletal modes of vibration

N =2 for -(CH,),-

- 2
ﬂ) :3R(@L J exp(@L/T)
‘/

Cym :[ >
dT 4 [exp(Of /T)—-1]"

hop
Einstein temperature: (’) E . E
kg
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Below 50K need more detailed breakup of 1d and 3d vibrations using Debye Approach

Weak Van der Waals interactions between chains described by 3d Debye function

D4(8/T3) = 3 (8/T5)F 7 {[(6/T)*exp(B/T)) / [exp(8/T) - 112} d(6/T)

CV /3Nk = Da (6/T3)

B3 =hvy/K For skeletal modes normal to the chain

Strong covalent interactions along chains described by 1d Debye function

D;(8/T;) = (B/T;f &7 {[(8/T)Pexp(8/T)] / [exp(B/T) - 112} d(6/T)
C,/3Nk=D4(6/Ty)
8/T=hvy/k For skeletal vibrations in the chain axis

Linear heat capacity increase from 0 to 200K
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C(Tarasov) = NR/3{D;(84/T) - (8/61)[D;(84/T) - D5(84/T)] }

At low frequency 3d vibrations, at high frequency 1d vibrations

1d Tasarov simplification (generates about 1% error versus experimental)

Cr=NK3[(6.7T/84)2/ (1 + (6.7T/84)3)]
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Polystyrene B n

I
H

I—O—I

Natoms = 16 atoms per unit
N = 6 skeletal mode vibrations 42 total atomic group modes of vibration

¢] Number 3] Number
NE = 3Nyioms - N 4000 8 700 2
Ng =42 2000 10 500 1
91=285 K 1500 12 350 1

1000 8 - -

E(8/T) = [(8/T)%exp(6/T)] / [exp(8/T) - 1]2
Ce = Nk ne E(8/T)

Or calculate with the Tasarov Equation Cr=6R[(T/42.5)?/ (1 + (T/42.5)?)]
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MOLAR HEAT CAPACITY OF PS VS TEMPERATURE

150
125 -
Cp- Cy=-T (dVIdT)?p/ (dVIdP)?1= Va®BT

V,, =92.8 - 99.6 cm®/mol (0 - 300K) s
B=3.58 GPa =

ay=2.3710"*and E 75 -
a,=5.7410 and 3
8

g A
¥

25 4

il = Expansion
0 +x ; = ——— . v
0 50 100 150 200 250 300

Temperature (K)
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Average Energy and the Partition Function

Consider a set of N independent (No Enthalpy) molecules at different energy states, N; molecules at E;
The average energy is E = },; N;E;

Ne—FEi/kT

The Boltzmann Probability gives N; = }}; and Z = Y, e Ei/KT is the partition function
Then E = > %,; Eje 5/

d Ei  _p B, d _g.
Consider —e E/KT = 4 —L o=Ei/kT g0 Fe~Ei/KT = kT2 —e Ei/kT

kT
2
E = NkT Z ie_Ei/kT
. dT

Z
l
NkT?
EdT = dZ
7
E = —NkT InZ

For ground state £ =0, Zat T=0is 1; for 7= oo, Z is the number of states (degeneracy)

For molecular vibrations £ = hw
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1907 Einstein Solid Model for Dulong Petit Law at high kT

Energy is quantized, quantum number is “n” goes from 1 to positive integer values
for the principal quantum number

Smallest quantum of energy is € = hv

Energy for quantum number ”n” is

E,=hv(n+1/2) = g¢(n+1/2)

Total number of quantum states N

Total energy Ne(n+1/2)

Ground state energy

Geometric Series 2" =1
k=0

~

exp(N(u —e)/kpT) = Z[exp((y. —¢)/kgT)|Y
N=0 N=0
1
1 —exp((u—e)/kpT)

Z_
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1907 Einstein Solid Model for Dulong Petit Law at high kT

2= Zexp N(p—e)/kgT) = Z[exp —¢)/kgT)|V
N=0
1

T 1—exp((u—e)/knT)

Energy = -kT log (Z2); log(1/Z) = -log(Z)

A system of vibrations in a crystalline solid lattice can be modelled as an Einstein solid, i.e. by considering N quantum harmonic oscillator potentials along each
degree of freedom. Then, the free energy of the system can be written as'"

F = Neg + NkpT | 10%(1 —e '""“""k"T) exp(x) = 1 + x+ x2/2! + x3/3! +... At high kT => log(hv/kT)

hw,,
F = Neg + NkBTZIOg(k T)

B FisA; Eis U
Define geometric mean frequency by

1
logw = — Zlogwn,
9 =

where g measures the total number of spatial degrees of freedom of the system.
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1907 Einstein Solid Model for Dulong Petit Law at high kT

F=Neo+ NkgT ) 1og(%).

kgT FisA;Eis U
F = Neg — gNkgT log kgT + gNkpT log hiv.
Using energy
E=F- T(O—F) 4
oT ) v
we have
E = Ney + gNkgT.
This gives heat capacity at constant volume
oF
Cy = ar ). = gNkg, Molar C,/N = gk or C, =3R in 3d
v
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|
E=ho |:— + n(w, T)]
Phonons From Dove 9

I
Bose-Einstein Relationship (n) = E Zn exp(—pne) Z = ZGXP(—ﬁNG)
n n
__ Loz S ]
BZ de - l —x
(n) = Z exp(—Pe) | z |
n) = EXpl—pe) = —
P exp(pe) — 1 | —exp(—pe)

As temperature increases the
| - number at frequency v increase
- As vincreases the number

o

nlw, T) =

_dI'OpS E Fig. 9.1 The Bose-Einstein distribution
n(w, T) as a function of kg T/ hw.

exp(hw/kgT) — 1

n(w,7)

l -

() 1 1 1 L 1
0 1 2 3

kpT/ho 131




Phonons From Dove
Einstein Model for Heat Capacity

|
i E=hw|:; +ll]
(.vz(dE) EisU =

( T) =
L Mo D) = o tha/ksT) — |

B Zk ( hiw )2 exp(hw/kgT)
LB lexp(hiw/kgT) — 12
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Heat capacity (J mol~! K~1)

Phonons From Dove

250 .
: c (dU] 3‘{ Op JZ exp(©g /T)
1 V. =| — —
200 B "olar ), T ) [exp(©®g/T)-11
150 _| where O, the Einstein temperature, is defined by
: h(DE
- eE = —
100 - kp
50 -
O '-:' A I l A L ' l L ' A l 1 A I l L 1 ' l 1 L A l A L I )
0 200 400 600 8800 1000 1200 1400 Fig. 9.2 Comparison of calculated (line) and

experimental (points) heat capacity of the

Temperature (K) mineral andalusite, Al>Si0s.



I

Phonons From Dove Phonon Free Energy Z= | — exp(—fBe)
F = _ﬂl InZ F is A Helmholz Free Energy
1 1 :
F = —€ + —In[1 — exp(—B¢)] Including ground state
2 B energy
1
= —In[2sinh(Be/2)]  gp,_ &€ _€° -1 _ 1-e™
.................. p 2 2e? 2e 2

— y = sinh(x) At hlgh T l
o :::::f:; F = Eln(ﬁe) S = —0F/oT

S = k[l —In(Be)]
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Phonons From Dove

Heat capacity (J mol~! K1)

|
F==
p

For a crystal sum over all vibrations

k.v

T

T

P

P

I T ST Y

P

P

200

400

600 800
Temperature (K)

1000

1200

1400

Y In{2sinh[Bho (K. v)/2])

F is A Helmholz Free Energy

Fig. 9.2 Comparison of calculated (line) and
experimental (points) heat capacity of the
mineral andalusite, Al>SiOs.
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From Kittel and Kroemer Thermal Physics Chapter 3

Z = Z exp(— shw/t). For quantized phonons
=0
(s = expl—y)
This is of the form ¥ x! with x <<1 equals 1/(1-x) ! —exp(—y) "
i  expl —shey/t) 1
Z = . P(s) = - . . o
[ — exp(—ho/t) Z > exp{hw/) — 1
{s) = ZSP[S) - Z“Zs exp(~ shwft). Planck Distribution
5=0
" ! - haw
SEXP(—31) = —~-— ) exp{—st g) = ho = b
Z\L pl—51) iy _‘_L\p( s1) (&) (sHhw exp(ﬁw/r) -

i

o t )_ exp(—x) |
H\T=ewpt—1) ™ [T el
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Einstein Model
Works at low and high temperature
Lower at low temperature

Quantized energy levels

— (o L
g, =(n +2—)ha)

Bose-Einstein statistics determines the distribution of energies

_ 1

The mean “n” at T is given by = »
exp(hw/kgT) —1

Average energy for a crystal with three identical oscillators

S : | - * 7'
U =3N(1 + mhog =3N dacd Y aced N
= - 2 exp(ha)E /kBT) —1.
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Einstein Model
Works at low and high temperature
Lower at low temperature

Average energy for a crystal with three identical oscillators

U =3N(1 + mhog =3N 805, & | dacd
= 2 exp(hwg / kgT) —1

T >
Cym =[d—UJ =3R[ O J exp(Og /T)
| 7

hog
Einstein temperature: O E = L
kg
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Einstein Model
Works at low and high temperature
Lower at low temperature

Cy.m =3R=2494] K~ mol~!

3R 6 0.0 <

it 20

|

=)

= ”

T 3 B
Of exp(Og /T) f g -
T ) [exp@p/T)-1F & 10T £

O > g

° VE

0 10 20 30 40
v/ THz

1

0 200 400
T/K

Figure 8.3 Experimental heat capacity of Cu at constant pressure compared with Cy , cal-
culated by the Einstein model using O =244 K. The vibrational frequency used in the Ejip-
stein model is shown in the insert.



Einstein Model
Works at low and high temperature
Lower at low temperature

Cy.m =3R=2494] K~ mol~!

in Figure 8.3 to Cy ;,, calculated using the Einstein model with © = 244 K. The 3R . i
insert to the figure shows the Einstein frequency of Cu. All 3L vibrational modes
have the same frequency, v =32 THz. However, whereas Cy p, is observed experi- ()
mentally to vary proportionally with 73 at low temperatures, the Einstein heat
capacity decreases more rapidly; it is proportional to exp(®@/T) at low tempera-
tures. In order to reproduce the observed low temperature behaviour qualitatively,
one more essential factor must be taken into account: the lattice vibrations of each
individual atom are not independent of each other — collective lattice vibrations
must be considered. 10 |

O

vibrational
density of states

Ve

Single vibrational mode for all three DOF

, 0 10 20 30 40
Low T behavior exp(®:/T) doesn’t work v/ THz
C, follows T3 0 L
Lattice vibrations are coupled to each other 0 200 400
Collective Lattice Vibrations r/K

Figure 8.3 Experimental heat capacity of Cu at constant pressure compared with Cy , c:
culated by the Einstein model using O =244 K. The vibrational frequency us€d in the Ei

otoin mndal 1c chaum in tha incort



Debye Model
Works

20

Cy /I K mol™

0 &= :
0 200 400

T/K
Figure 8.12 Experimental heat capacity of Cu at constant pressure compared with the
Debye and Einstein Cy, . calculated by using O = 244 K and O = 314 K. The vibrational
density of states according to the two models is shown in the insert.
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